Câu hỏi:
11/07/2024 718Cho hàm số f(x) xác định trên \[\mathbb{R}\] và có đồ thị f'(x) như hình vẽ bên dưới. Tìm giá trị nhỏ nhất của hàm số g(x) = f(2x) − 2x + 1 trên đoạn \[\left[ { - \frac{1}{2};1} \right]\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét hàm số: g(x) = f(2x) – 2x + 1 trên đoạn \[\left[ { - \frac{1}{2};1} \right]\]
Ta có: g' (x) = 2f '(2x) – 2
g' (x) = 0 Û f '(2x) = 1
Û 2x = 1 \[ \Leftrightarrow x = \frac{1}{2}\]
Số nghiệm của phương trình g’(x) = 0 chính là số giao điểm giữa đồ thị của hàm số f’(2x) và đường thẳng y = 1.
Bảng biến thiên:
Giá trị nhỏ nhất của hàm số g(x) = f(2x) − 2x + 1 trên đoạn \[\left[ { - \frac{1}{2};1} \right]\]bằng:
g(1) = f(2) – 1
Vậy giá trị nhỏ nhất của hàm số g(x) = f(2x) − 2x + 1 trên đoạn \[\left[ { - \frac{1}{2};1} \right]\] là f(2) – 1.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ∈ ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?
Câu 2:
Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].
Câu 3:
Cho hai tập hợp A = [−2; 3] ; B = (m; m + 6). Tìm điều kiện để A ⊂ B.
Câu 4:
Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.
Câu 5:
Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.
Câu 6:
Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.
Câu 7:
Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để được ít nhất một lần xuất hiện mặt sấp.
về câu hỏi!