Cho bất phương trình \[4\sqrt {(x + 1)(3 - x)} \le {x^2} - 2x + m - 3\]. Xác định m để bất phương trình nghiệm đúng với ∀x ∈ [−1; 3].
Cho bất phương trình \[4\sqrt {(x + 1)(3 - x)} \le {x^2} - 2x + m - 3\]. Xác định m để bất phương trình nghiệm đúng với ∀x ∈ [−1; 3].
Quảng cáo
Trả lời:
Với ∀x ∈ [−1; 3] đặt \[t = 4\sqrt {(x + 1)(3 - x)} \le \frac{{x + 1 + 3 - x}}{2} = 2\]
Þ t Î [0;2]
Khi đó bất phương trình:
\[4\sqrt {(x + 1)(3 - x)} \le {x^2} - 2x + m - 3\] trở thành 4t £ −t2 + m
Û t2 + 4t £ m
Với t Î [0;2] Þ 0 £ t2 + 4t £ 12
Þ m ≥ 12
Vậy m ≥ 12 thỏa mãn đề bài.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]
Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)
Từ đồ thị ta thấy: x1 + x2 > 0
Þ ab < 0 Þ b > 0
Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0
Đồ thị hàm số giao với trục tung tại điểm có tung độ y
Þ d > 0
Vậy trong các số a, b, c, d có 2 số dương.
Lời giải
Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]
Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.