Câu hỏi:

25/09/2023 397

rong mặt phẳng tọa độ Oxy, cho \[\overrightarrow v \] = (1;3) và đường thẳng d có phương trình 2x 3y + 5 = 0. Viết phương trình đường thẳng d' là ảnh của d qua phép tịnh tiến \[{T_{\overrightarrow v }}\] .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sử dụng tính chất của phép tịnh tiến

Do \[d' = {T_{\overrightarrow v }}(d)\] nên d' song song hoặc trùng với d

Þ phương trình đường thẳng d' có dạng 2x − 3y + c = 0 (**)

Lấy điểm M(−1;1) d. Khi đó \[M' = {T_{\overrightarrow v }}(M) = ( - 1 + 1;1 - 3) = (0; - 2)\]

Do M' d' Þ 2.0 − 3.( −2) + c = 0 c = −6

Vậy ảnh của d là đường thẳng d': 2x − 3y − 6 = 0.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?

Cho hàm số y = ax^3 + bx^2 + cx + d (a, b, c, d thuộc R) có đồ thị là đường cong trong  (ảnh 1)

Xem đáp án » 11/07/2024 39,506

Câu 2:

Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].

Xem đáp án » 11/07/2024 23,944

Câu 3:

Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.

Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một (ảnh 1)

Xem đáp án » 11/07/2024 18,113

Câu 4:

Cho hai tập hợp A = [2; 3] ; B = (m; m + 6). Tìm điều kiện để A B.

Xem đáp án » 11/07/2024 17,402

Câu 5:

Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.

Xem đáp án » 11/07/2024 17,173

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng aSA (ABCD)\[SA = a\sqrt 3 \]. Gọi M là trung điểm của SD. Tính khoảng cách giữa hai đường thẳng AB và CM.

Xem đáp án » 11/07/2024 16,326

Câu 7:

Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.

Xem đáp án » 11/07/2024 13,879
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua