Cho Parabol (P): y = x2 và đường thẳng (d): y = mx – m + 1.
a) Tìm toạ độ giao điểm của (P) và (d) khi m = 4.
b) Tìm m để (d) cắt (P) tạo hai điểm phân biệt có hoành độ thoả mãn x1 = 9x2.
Cho Parabol (P): y = x2 và đường thẳng (d): y = mx – m + 1.
a) Tìm toạ độ giao điểm của (P) và (d) khi m = 4.
b) Tìm m để (d) cắt (P) tạo hai điểm phân biệt có hoành độ thoả mãn x1 = 9x2.
Quảng cáo
Trả lời:
a) Xét phương trình hoành độ giao điểm:
x2 = mx – m + 1
Û x2 – mx + m – 1 = 0 (1)
Thay m = 4 vào phương trình (1) ta có:
x2 – 4x + 3 = 0
Û x2 – x – 3x + 3 = 0
Û x(x – 1) – 3(x – 1) = 0
Û (x – 1)(x – 3) = 0
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - 1 = 0}\\{x - 3 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 3}\end{array}} \right.\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{y = 1}\\{y = 9}\end{array}} \right.\]
Vậy toạ độ giao điểm của (P) và (d) khi m = 4 là A(1; 1) và B(3; 9).
b) Phương trình: x2 – mx + m – 1 = 0 (1)
Û x2 – 1 – mx + m = 0
Û (x – 1)(x + 1) – m(x – 1) = 0
Û (x – 1)(x + 1 – m) = 0
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - 1 = 0}\\{x + 1 - m = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = m - 1}\end{array}} \right.\]
Để (d) cắt (P) tạo hai điểm phân biệt thì phương trình (1) phải có 2 nghiệm phân biệt.
Do đó, \[m - 1 \ne 1 \Leftrightarrow m \ne 2\]
Ta có: x1 = 9x2
• Trường hợp 1: 1 = 9(m – 1)
Û 1 = 9m – 9
Û 9m = 10
Û \[m = \frac{{10}}{9}\] (TMĐK)
• Trường hợp 2: m – 1 = 9. 1
Û m – 1 = 9
Û m = 10 (TMĐK)
Vậy tập hợp các giá trị m thoả mãn đề bài là \[S = \left\{ {\frac{{10}}{9};10} \right\}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]
Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)
Từ đồ thị ta thấy: x1 + x2 > 0
Þ ab < 0 Þ b > 0
Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0
Đồ thị hàm số giao với trục tung tại điểm có tung độ y
Þ d > 0
Vậy trong các số a, b, c, d có 2 số dương.
Lời giải
Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]
Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.