Câu hỏi:
25/09/2023 91Tìm m để các bất phương trình \[\frac{{3\sin \,2x + \cos \,2x}}{{\sin \,2x + 4\cos {\,^2}\,x + 1}} \le m + 1\] đúng với mọi \[x \in \mathbb{R}\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt \[y = \frac{{3\sin \,2x + \cos \,2x}}{{\sin \,2x + 4\cos {\,^2}\,x + 1}} = \frac{{3\sin \,2x + \cos \,2x}}{{\sin \,2x + 2\left( {1 + \cos \,2x} \right) + 1}}\]
\[ = \frac{{3\sin \,2x + \cos \,2x}}{{\sin \,2x + 2\cos \,2x + 3}}\]
⇔y.sin 2x + 2y.cos 2x + 3y = 3.sin 2x + cos 2x
Û (y − 3).sin 2x + (2y − 1).cos 2x = −3y (*)
Theo bất đẳng thức Bunhiacopxki, ta có:
[(y − 3).sin 2x + (2y − 1).cos 2x]2 ≤ (y − 3)2 + (2y − 1)2
Kết hợp với (*), ta được:
9y2 £ (y – 3)2 + (2y – 1)2
\[ \Leftrightarrow y \le \frac{{ - 5 + \sqrt {65} }}{4}\]
\[ \Leftrightarrow \max y = \frac{{ - 5 + \sqrt {65} }}{4}\]
Để bất phương trình\[\frac{{3\sin \,2x + \cos \,2x}}{{\sin \,2x + 4\cos {\,^2}\,x + 1}} \le m + 1\] đúng với mọi \[x \in \mathbb{R}\]
\[ \Leftrightarrow m + 1 \ge \max y = \frac{{ - 5 + \sqrt {65} }}{4}\]
\[ \Leftrightarrow m \ge = \frac{{\sqrt {65} - 9}}{4}\]
Vậy \[m \ge = \frac{{\sqrt {65} - 9}}{4}\] thỏa mãn đề bài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ∈ ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?
Câu 2:
Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].
Câu 3:
Cho hai tập hợp A = [−2; 3] ; B = (m; m + 6). Tìm điều kiện để A ⊂ B.
Câu 4:
Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.
Câu 5:
Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.
Câu 6:
Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.
Câu 7:
Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để được ít nhất một lần xuất hiện mặt sấp.
về câu hỏi!