Câu hỏi:
11/07/2024 430Cho p, q là số nguyên tố và phương trình x2 − px + q = 0 có nghiệm nguyên dương. Tìm p, q.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Để phương trình đã cho có nghiệm nguyên dương thì Δ = p2 − 4q là số chính phương.
Đặt p2 − 4q = k2 ⇔ 4q = (p − k)(p + k) với k là số tự nhiên.
Do p − k, p + k cùng tính chẵn, lẻ mà tích của chúng chẵn nên hai số này cùng chẵn.
Mặt khác p − k < p + k và q là số nguyên tố nên:
p − k = 2 và p + k = 2q hoặc p − k = 4 và p + k = q
Nếu p − k = 4 và p + k = q thì q chẵn do đó q = 2 (vô lí vì p + k > p − k).
Nếu p − k = 2 và p + k = 2q thì 2p = 2q + 2 tức p = q + 1. Do đó q chẵn tức q = 2. Suy ra p = 3.
Thử lại ta thấy phương trình: x2 − 3x + 2= 0 có nghiệm nguyên dương x = 1 và x = 2.
Vậy p = 3; q = 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ∈ ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?
Câu 2:
Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].
Câu 3:
Cho hai tập hợp A = [−2; 3] ; B = (m; m + 6). Tìm điều kiện để A ⊂ B.
Câu 4:
Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.
Câu 5:
Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.
Câu 6:
Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.
Câu 7:
Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để được ít nhất một lần xuất hiện mặt sấp.
về câu hỏi!