Câu hỏi:
11/07/2024 2,097Lớp 10B có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hóa, 3 học sinh giỏi cả Lý và Toán, 4 học sinh giỏi cả Toán và Hóa, 2 học sinh giỏi cả Lý và Hóa, 1 học sinh giỏi cả Toán, Lý, Hóa. Tính số học sinh của lớp 10B.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Số học sinh giỏi Lý, Toán không giỏi Hóa là: 3 – 1 = 2
Số học sinh giỏi Toán, Hóa không giỏi Lý là: 4 – 1 = 3
Số học sinh giỏi Lý, Hóa không giỏi Toán là: 2 – 1 = 1
Số học sinh chỉ giỏi Toán là: 7 – (3 – 1) – (4 – 1) – 1 = 1
Số học sinh chỉ giỏi Lý là: 5 – (3 – 1) – (2 – 1) – 1 = 1
Số học sinh chỉ giỏi Hóa là: 6 – (4 – 1) – (2 – 1) – 1 = 1
Số học sinh của cả lớp là:
1 + 1 + 1 + 2 + 3 + 1 + 1 = 10 (học sinh)
Đáp số: 10 học sinh
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ∈ ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?
Câu 2:
Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].
Câu 3:
Cho hai tập hợp A = [−2; 3] ; B = (m; m + 6). Tìm điều kiện để A ⊂ B.
Câu 4:
Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.
Câu 5:
Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.
Câu 6:
Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.
Câu 7:
Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để được ít nhất một lần xuất hiện mặt sấp.
về câu hỏi!