Câu hỏi:

11/07/2024 2,119

Tìm số giao điểm của đồ thị hàm số y = x4 − 3x2 − 5 và trục hoành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình hoành độ giao điểm của đồ thị hàm số y = x4 − 3x2 − 5 và trục hoành:

\[{x^4} - 3{x^2} - 5 = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = \frac{{3 + \sqrt {29} }}{2}\\{x^2} = \frac{{3 - \sqrt {29} }}{2}\,\,(L)\end{array} \right. \Leftrightarrow x = \pm \sqrt {\frac{{3 + \sqrt {29} }}{2}} \]

Phương trình trên có 2 nghiệm phân biệt

Vậy số giao điểm của đồ thị hàm số y = f(x) với trục hoành bằng 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]

Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)

Từ đồ thị ta thấy: x1 + x2 > 0

Þ ab < 0 Þ b > 0

Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0

Đồ thị hàm số giao với trục tung tại điểm có tung độ y

Þ d > 0

Vậy trong các số a, b, c, d có 2 số dương.

Lời giải

Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]

Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP