Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Cạnh bên SA = \[a\sqrt 2 \], hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Cạnh bên SA = \[a\sqrt 2 \], hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC.
Quảng cáo
Trả lời:


ΔABC vuông cân tại B có AB = a
\[ \Rightarrow AC = a\sqrt 2 \]
Gọi M là trung điểm AC
\[ \Rightarrow MA = MB = MC = \frac{1}{2}AC = a\sqrt 2 ;SM \bot (ABC)\]
Þ SM là trục của mặt phẳng đáy (ABC)
Gọi N là trung điểm SA
Trong mp(SAM) kẻ NI ⊥ SA (I ∈ SM)
Þ I là tâm mặt cầu ngoại tiếp khối chóp S.ABC
Ta có: ΔSNI ᔕ ΔSMA (g.g)
\[ \Rightarrow \frac{{SN}}{{SM}} = \frac{{SI}}{{SA}}\]
\[ \Rightarrow SI = R = \frac{{SA.SN}}{{SM}}\]
\[ \Rightarrow R = \frac{{S{A^2}}}{{2SM}} = \frac{{S{A^2}}}{{2\sqrt {S{A^2} - A{M^2}} }}\]
\[ \Rightarrow R = \frac{{a\sqrt 6 }}{3}\]
Vậy \[R = \frac{{a\sqrt 6 }}{3}\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]
Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)
Từ đồ thị ta thấy: x1 + x2 > 0
Þ ab < 0 Þ b > 0
Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0
Đồ thị hàm số giao với trục tung tại điểm có tung độ y
Þ d > 0
Vậy trong các số a, b, c, d có 2 số dương.
Lời giải
Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]
Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.