Câu hỏi:

19/08/2025 947 Lưu

Có bao nhiêu giá trị nguyên của tham số m để phương trình: 2sin2 2x + 3sin2x + m – 1 = 0 có đúng 2 nghiệm thuộc \(\left[ {0;\frac{\pi }{4}} \right]\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét f(x, m) = : 2sin2 2x + 3sin2x + m – 1 = 0

Coi phương trình trên là phương trình bậc hai với ẩn là: sin2x, ta có

\(\Delta = {3^2} - 2 \cdot (m - 1) = 9 - 2m + 2 = 11 - 2m\)

Để phương trình có hai nghiệm

\( \Leftrightarrow \Delta > 0 \Leftrightarrow 11 - 2m > 0 \Leftrightarrow m < \frac{{11}}{2}\)

Áp dụng hệ thức Vi – ét, ta có:

\(S = {x_1} + {x_2} = \frac{3}{2}\)

Ta có:\(\left\{ {\begin{array}{*{20}{l}}{{a_f} = 2}\\{f(0) = m - 1}\\{f\left( {\frac{\pi }{4}} \right) = m + 4}\end{array}} \right.\)

Để phương trình đã cho có hai nghiệm x thuộc \(\left[ {0;\frac{\pi }{4}} \right] \Leftrightarrow 0 \le {x_1} < {x_2} \le \frac{\pi }{4}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{a_f}.f(0) \ge 0}\\{{a_f}.f\left( {\frac{\pi }{4}} \right) \ge 0}\\{0 \le \frac{S}{2} \le \frac{\pi }{4}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2\left( {m - 1} \right) \ge 0}\\{2\left( {m + 4} \right) \ge 0}\\{0 \le \frac{{\frac{3}{2}}}{2} \le \frac{\pi }{4}}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ge 0\\m + 4 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge 1\\m \ge - 4\end{array} \right. \Leftrightarrow m \ge 1\)

\(m < \frac{{11}}{2}\) suy ra \(m \in \left[ {1;\left. {\frac{{11}}{2}} \right)} \right.\)

Mặt khác m Z nên m {1; 2; 3; 4; 5}

Vậy có 5 giá trị nguyên của m là 1; 2; 3; 4; 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Gọi x là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày (x ≥ 0).

Gọi y là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày (y ≥ 0).

Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B nên x ≤ 600 và y ≤ 500.

Một người mỗi ngày cần từ 400 đến 1 000 đơn vị vitamin cả A và B nên:

400 ≤ x + y ≤ 1000

Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn \(\frac{1}{2}\) số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A nên:

\(\left\{ \begin{array}{l}y \ge \frac{1}{2}x\\y \le 3{\rm{x}}\end{array} \right.\)

Ta có hệ bất phương trình giữa x và y: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x \le 600\\y \le 500\\x + y \ge 400\\x + y \le 1000\\y \ge \frac{1}{2}x\\y \le 3{\rm{x}}\end{array} \right.\)

Biểu diễn miền nghiệm của hệ bất phương trình:

− Biểu diễn miền nghiệm D1 của bất phương trình x ≤ 600

+ Vẽ đường thẳng d1: x = 600 trên mặt phẳng tọa độ Oxy

+ Thay x = 0, y = 0 vào bất phương trình ta được 0 ≤ 600 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x ≤ 600

Vậy miền nghiệm D1 của bất phương trình x ≤ 600 là nửa mặt phẳng bờ d1 (kể cả bờ d1) chứa điểm O.

Tương tự ta biểu diễn các miền nghiệm:

− Miền nghiệm D2 của bất phương trình y ≤ 500: là nửa mặt phẳng bờ d2 (kể cả bờ d2: y = 500) chứa điểm O.

− Miền nghiệm D3 của bất phương trình x + y ≥ 400: là nửa mặt phẳng bờ d3 (kể cả bờ d3: x + y = 400) không chứa điểm O.

− Miền nghiệm D4 của bất phương trình x + y ≤ 1000: là nửa mặt phẳng bờ d4 (kể cả bờ d4: x + y = 1000) chứa điểm O.

− Miền nghiệm D5 của bất phương trình \(y \ge \frac{1}{2}x\): là nửa mặt phẳng bờ d5 (kể cả bờ d5\(y = \frac{1}{2}x\) ) chứa điểm M(0; 50).

− Miền nghiệm D6 của bất phương trình y ≤ 3x: là nửa mặt phẳng bờ d6 (kể cả bờ d6: y = 3x) không chứa điểm M (0; 50).

Ta có đồ thị sau:

Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối (ảnh 1)

Miền nghiệm của hệ bất phương trình là miền của đa giác ABCDEF với: \(A\left( {100;300} \right),B\left( {\frac{{500}}{3};500} \right),C\left( {500;500} \right),D\left( {600;400} \right),E\left( {600;300} \right);F\left( {\frac{{800}}{3};\frac{{400}}{3}} \right)\)

Số tiền trả cho x đơn vị vitamin A và y đơn vị vitamin B là: F(x; y) = 9x + 7,5y

Để có số tiền phải trả là ít nhất thì F(x; y) phải nhỏ nhất

Tại A(100; 300): F = 9.100 + 7,5. 300 = 3150;

Tại \(B\left( {\frac{{500}}{3};500} \right):F = 9.\frac{{500}}{3} + 7,5.500 = 5250\)

Tại C(500; 500): F = 9. 500 + 7,5. 500 = 8250;

Tại D(600, 400): F = 9. 600 + 7,5. 400 = 8400;

Tại E(600, 300): F = 9. 600 + 7,5. 300 = 7650;

Tại \(F\left( {\frac{{800}}{3};\frac{{400}}{3}} \right):F = 9.\frac{{800}}{3} + 7,5.\frac{{400}}{3} = 3400\).

Suy ra F(x; y) nhỏ nhất là 3150 khi x = 100 và y = 300

Do đó mỗi người sẽ dùng 100 đơn vị vitamin A và 300 đơn vị vitamin B để đảm bảo các điều kiện số lượng sử dụng và chi phí phải trả là ít nhất

Vậy ta chọn đáp án D.

Lời giải

Đáp án đúng là: D

Cho đường tròn (O) bán kính OA. Từ trung điểm M của OA vẽ dây BC vuông (ảnh 1)

Vì độ dài đường tròn là 4π nên 4π = 2π . R

Suy ra R = 2 (cm)

Xét tứ giác ABOC có hai đường chéo AO và BC vuông góc với nhau tại trung điểm M nên ABOC là hình thoi

Suy ra OB = OC = AB

Do đó tam giác ABO đều nên \(\widehat {AOB} = 60^\circ \)

Suy ra \(\widehat {BOC} = 2\widehat {AOB} = 2.60^\circ = 120^\circ \)

Do đó số đo cung lớn BC là 360° – 120° = 240°

Độ dài cung lớn BC là \(l = \frac{{\pi .2.240^\circ }}{{180^\circ }} = \frac{{8\pi }}{3}\) (cm)

Vậy ta chọn đáp án D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP