Câu hỏi:

11/07/2024 205

Một hình nón có thiết diện qua trục là một tam giác đều cạnh a.

a) Tính diện tích xung quanh và diện tihcs toàn phần của hình nón

b) Tính thể tích của khối nón

c) Tính diệc tích của thiết diện

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Một hình nón có thiết diện qua trục là một tam giác đều cạnh a. a) Tính diện tích xung quanh (ảnh 1)

Ta có: Độ dài đường sinh của hình nón là: l = SA = SB = 2a

Vì tam giác ABC đều, suy ra AB = SA = SB = 2a

Bán kính đường tròn đáy là: \(R = OA = \frac{{AB}}{2} = a\)

Vì tam giác SOB là tam giác vuông nên ta có:

Chiều cao của hình nó là:

\(h = SO = \sqrt {S{B^2} - O{B^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \)

a) Diện tích xung qunah của hình nón là:

Sxq = p.R.l = p.a.2a = 2pa2 (đvdt)

Diện tích toàn phân của hình nón là:

Stp = Sxq + Sđáy = 2pa2 + pa2 = 3pa2 (đvdt)

b) Thể tích của hình nón là:

\(V = \frac{1}{3}S\,.\,h = \frac{1}{3}\pi {R^2}\,.\,h = \frac{1}{3}\pi {a^2}\,.\,a\sqrt 3 = \frac{{\pi {a^3}\sqrt 3 }}{3}\) (đvdt)

c) Diện tích của thiết diện chính là của tam giác SAB, ta có:

\({S_{SAB}} = \frac{1}{2}SO\,.\,AB = \frac{1}{2}\,.\,a\sqrt 3 \,.\,2a = {a^2}\sqrt 3 \) (đvdt)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[{\cos ^2}2x = \frac{{\cos 4x + 1}}{2} = \frac{1}{2}\cos 4x + \frac{1}{2}\]

Do đó nguyên hàm của hàm số f (x) = cos2 (2x) là:

\(\int {f\left( x \right)dx} = \int {\left( {\frac{1}{2}\cos 4x + \frac{1}{2}} \right)dx} = \frac{1}{8}\sin 4x + \frac{1}{2}x + C\).

Lời giải

Xếp 6 người chồng quanh bàn tròn có 5! cách.

Xếp các bà vợ vào ngồi cạnh chồng của mình, mỗi bà vợ có 2 vị trí ngồi nên có 26 cách.
Vậy số cách xếp là 5!.26
= 7680 cách.

Câu 3

Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?

Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức  (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay