Câu hỏi:
11/07/2024 1,685
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 4) và B(1; 1). Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại B?
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 4) và B(1; 1). Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại B?
Quảng cáo
Trả lời:
Gọi tọa độ của điểm C là C(x; y)
Ta có: \(\left\{ \begin{array}{l}\overrightarrow {BA} = \left( {1;\;3} \right)\\\overrightarrow {BC} = \left( {x - 1;\;y - 1} \right)\end{array} \right.\)
Để tam giác ABC vuông cân tại B thì: \(\left\{ \begin{array}{l}\overrightarrow {BA} \,.\,\overrightarrow {BC} = 0\\BA = BC\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}1\,.\,\left( {x - 1} \right) + 3\,.\,\left( {y - 1} \right) = 0\\\sqrt {{1^2} + {3^2}} = \sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} \end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 4 - 3y\\10 = {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4 - 3y\\10 = {\left( {3 - 3y} \right)^2} + {\left( {y - 1} \right)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 4 - 3y\\10 = 9{\left( {y - 1} \right)^2} + {\left( {y - 1} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4 - 3y\\10 = 10{\left( {y - 1} \right)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 4 - 3y\\{\left( {y - 1} \right)^2} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4 - 3y\\\left[ \begin{array}{l}y - 1 = 1\\y - 1 = - 1\end{array} \right.\end{array} \right.\)
\[ \Leftrightarrow \left\{ \begin{array}{l}x = 4 - 3y\\\left[ \begin{array}{l}y = 2\\y = 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 2\\y = 2\end{array} \right.\\\left\{ \begin{array}{l}x = 4\\y = 0\end{array} \right.\end{array} \right.\]
Vậy tọa độ của điểm C thỏa mãn yêu cầu bài toán là C(−2; 2) và C(4; 0).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[{\cos ^2}2x = \frac{{\cos 4x + 1}}{2} = \frac{1}{2}\cos 4x + \frac{1}{2}\]
Do đó nguyên hàm của hàm số f (x) = cos2 (2x) là:
\(\int {f\left( x \right)dx} = \int {\left( {\frac{1}{2}\cos 4x + \frac{1}{2}} \right)dx} = \frac{1}{8}\sin 4x + \frac{1}{2}x + C\).
Lời giải
Xếp 6 người chồng quanh bàn tròn có 5! cách.
Xếp các bà vợ vào ngồi cạnh chồng của mình, mỗi bà vợ có 2 vị trí ngồi nên có 26 cách.
Vậy số cách xếp là 5!.26 = 7680 cách.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.