Câu hỏi:
11/07/2024 1,085Tính giá trị lớn nhất của hàm số \(f\left( x \right) = {e^{{x^3} - 3x + 3}}\) trên đoạn [0; 2].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \(f\left( x \right) = {e^{{x^3} - 3x + 3}} \Rightarrow f'\left( x \right) = \left( {3{x^2} - 3} \right){e^{{x^3} - 3x + 3}} = 3\left( {{x^2} - 1} \right){e^{{x^3} - 3x + 3}}\)
Xét \(f'\left( x \right) = 0 \Leftrightarrow 3\left( {{x^2} - 1} \right){e^{{x^3} - 3x + 3}} = 0\)
\( \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)
Trên đoạn [0; 2] ta có:
f (0) = e3; f (1) = e; f (2) = e5
Vậy giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] là e5.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu cách xếp 6 cặp vợ chồng ngồi xung quanh một chiếc bàn tròn, sao cho mỗi bà đều ngồi cạnh chồng của mình?
Câu 3:
Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 6 < 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\) chứa điểm nào sau đây?
Câu 4:
Tính tổng các nghiệm nguyên của bất phương trình:
log2 (x2 + 3) − log2 x + x2 − 4x + 1 ≤ 0
Câu 5:
Cho đa giác đều 2018 đỉnh. Hỏi có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn 100°?
Câu 6:
Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?
Câu 7:
Trên mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1; 3), B(−2; −2), C(3; 1). Tính cosin góc A của tam giác.
về câu hỏi!