Câu hỏi:
26/09/2023 130Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Mệnh đề: Đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy.
Giả sử đường kính MN đi qua M là điểm chính giữa cung AB
Vì M là điểm chính giữa cung AB nên ta có:
Mà dây MA chắn cung nhỏ AM, dây MB chắn cung nhỏ MB nên MA = MB (1)
Ta lại có: OA = OB (2) (cùng bằng bán kính đường tròn tâm O)
Từ (1) và (2) ta suy ra OM là đường trung trực của AB
Hay MN là đường trung trực của AB
Þ MN ^ AB (đpcm)
Mệnh đề đảo: Đường kính vuông góc với dây cung thì đi qua điểm chính giữa của cung ấy.
Chứng minh:
Giả sử đường kính MN vuông góc với dây AB tại H
Xét tam giác OAB có:
OA = OB (cùng bằng bán kính đường tròn tâm O)
Do đó, tam giác OAB cân tại O
Có: OH vuông góc với AB tại H (do MN vuông góc với dây AB tại H)
Do đó, OH là đường cao và cũng là đường phân giác
\( \Rightarrow \widehat {AOH} = \widehat {BOH} \Rightarrow \widehat {AOM} = \widehat {BOM}\)
Mà ta có:
Góc AOM chắn cung nhỏ AM
Góc BOM chắn cung nhỏ BM
Do đó, M là điểm chính giữa của cung nhỏ AB (đpcm)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu cách xếp 6 cặp vợ chồng ngồi xung quanh một chiếc bàn tròn, sao cho mỗi bà đều ngồi cạnh chồng của mình?
Câu 3:
Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 6 < 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\) chứa điểm nào sau đây?
Câu 4:
Tính tổng các nghiệm nguyên của bất phương trình:
log2 (x2 + 3) − log2 x + x2 − 4x + 1 ≤ 0
Câu 5:
Cho đa giác đều 2018 đỉnh. Hỏi có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn 100°?
Câu 6:
Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?
Câu 7:
Trên mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1; 3), B(−2; −2), C(3; 1). Tính cosin góc A của tam giác.
về câu hỏi!