Câu hỏi:

11/07/2024 960

Cho hàm số \(f\left( x \right) = \frac{{ax + 1}}{{bx + c}}\;\left( {a,\;b,\;c \in \mathbb{R}} \right)\) có bảng biến thiên như sau:

Cho hàm số f(x) = (ax + 1) / (bx + c) (a, b, c thuộc R) có bẳng biến thiên như sau (ảnh 1)

Trong các số a, b và c có bao nhiêu số dương?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dựa vào BBT ta thấy đồ thị hàm số có TCĐ: \(x = 2 \Rightarrow - \frac{c}{b} = 2 \Leftrightarrow c = - 2b\)

TCN: \(y = 1 \Rightarrow \frac{a}{b} = 1 \Leftrightarrow a = b\)

Ta có: \(f\left( x \right) = \frac{{ax + 1}}{{bx + c}} \Rightarrow f'\left( x \right) = \frac{{ac - b}}{{{{\left( {bx + c} \right)}^2}}}\)

Hàm số đồng biến trên các khoảng (−∞; 2) và (2; +∞)

Û y′ > 0, "x ¹ 2

\( \Leftrightarrow \frac{{ac - b}}{{{{\left( {bx + c} \right)}^2}}} > 0,\;\forall x \ne 2\)

Û ac − b > 0

Û b.( −2b) − b > 0

Û −2b2 − b > 0

Û 2b2 + b < 0

\( \Leftrightarrow - \frac{1}{2} < b < 0\)

Þ b < 0 Þ a < 0, c > 0

Vậy trong ba số a, b, c có 1 số dương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[{\cos ^2}2x = \frac{{\cos 4x + 1}}{2} = \frac{1}{2}\cos 4x + \frac{1}{2}\]

Do đó nguyên hàm của hàm số f (x) = cos2 (2x) là:

\(\int {f\left( x \right)dx} = \int {\left( {\frac{1}{2}\cos 4x + \frac{1}{2}} \right)dx} = \frac{1}{8}\sin 4x + \frac{1}{2}x + C\).

Lời giải

Xếp 6 người chồng quanh bàn tròn có 5! cách.

Xếp các bà vợ vào ngồi cạnh chồng của mình, mỗi bà vợ có 2 vị trí ngồi nên có 26 cách.
Vậy số cách xếp là 5!.26
= 7680 cách.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP