Câu hỏi:
26/09/2023 1,016
Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm ở trên đoạn thẳng AG, BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai?
Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm ở trên đoạn thẳng AG, BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai?
Quảng cáo
Trả lời:
Đáp án đúng là: C

Ta có A là điểm chung thứ nhất giưuax hai mặt phẳng (ACD) và (GAB)
Do BG Ç CD = M
\( \Rightarrow \left\{ \begin{array}{l}M \in BG \subset \left( {ABG} \right) \Rightarrow M \in \left( {ABG} \right)\\M \in CD \subset \left( {ACD} \right) \Rightarrow M \in \left( {ACD} \right)\end{array} \right.\)
Suy ra M là điểm chung thứu hai giữa hai mặt phẳng (ACD) và (GAB)
Suy ra AM = (ACD) Ç (ABG) nên A đúng
Ta có: \(\left\{ \begin{array}{l}BI \subset \left( {ABG} \right)\\AM \subset \left( {ABM} \right)\\\left( {ABG} \right) \equiv \left( {ABM} \right)\end{array} \right.\)
Suy ra AM, BI đồng phẳng
Þ J = BI Ç AM
Suy ra A, J, M thẳng hàng nên B đúng
Ta có: \(\left\{ \begin{array}{l}DJ \subset \left( {ACD} \right)\\DJ \subset \left( {BDJ} \right)\end{array} \right. \Rightarrow DJ = \left( {ACD} \right) \cap \left( {BDJ} \right)\) nên D đúng
Điểm I di động trên AG nên J có thể không phải là trung điểm của AM nên C sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[{\cos ^2}2x = \frac{{\cos 4x + 1}}{2} = \frac{1}{2}\cos 4x + \frac{1}{2}\]
Do đó nguyên hàm của hàm số f (x) = cos2 (2x) là:
\(\int {f\left( x \right)dx} = \int {\left( {\frac{1}{2}\cos 4x + \frac{1}{2}} \right)dx} = \frac{1}{8}\sin 4x + \frac{1}{2}x + C\).
Lời giải
Xếp 6 người chồng quanh bàn tròn có 5! cách.
Xếp các bà vợ vào ngồi cạnh chồng của mình, mỗi bà vợ có 2 vị trí ngồi nên có 26 cách.
Vậy số cách xếp là 5!.26 = 7680 cách.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.