Gọi G là trọng tâm tam giác đều ABC có cạnh bằng a. Mệnh đề nào sau đây là sai?
Gọi G là trọng tâm tam giác đều ABC có cạnh bằng a. Mệnh đề nào sau đây là sai?
A. \(\overrightarrow {AB} \,.\,\overrightarrow {AC} = \frac{1}{2}{a^2}\);
B. \(\overrightarrow {AC} \,.\,\overrightarrow {CB} = - \frac{1}{2}{a^2}\);
C. \(\overrightarrow {GA} \,.\,\overrightarrow {GB} = \frac{{{a^2}}}{6}\);
D. \(\overrightarrow {AB} \,.\,\overrightarrow {AG} = \frac{1}{2}{a^2}\).
Quảng cáo
Trả lời:

Đáp án đúng là: C
Dựa vào đáp án ta có các nhận xét sau:
Xác định được góc \[\left( {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right)\] là \[\widehat A\] nên \[\left( {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right) = 60^\circ \]
Do đó \(\overrightarrow {AB} \,.\,\overrightarrow {AC} = AB\,.\,AC\,.\,\cos \left( {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right) = a\,.\,a\,.\,\cos 60^\circ = \frac{1}{2}{a^2}\) nên A đúng
Xác định được góc \[\left( {\overrightarrow {AC} ,\;\overrightarrow {CB} } \right)\] là góc ngoài của \[\widehat C\] nên \[\left( {\overrightarrow {AC} ,\;\overrightarrow {CB} } \right) = 120^\circ \]
Do đó \(\overrightarrow {AC} \,.\,\overrightarrow {CB} = AC\,.\,CB\,.\,\cos \left( {\overrightarrow {AC} ,\;\overrightarrow {CB} } \right) = a\,.\,a\,.\,\cos 120^\circ = - \frac{1}{2}{a^2}\) nên B đúng
Xác định được góc \[\left( {\overrightarrow {GA} ,\;\overrightarrow {GB} } \right)\] là \[\widehat {AGB}\] nên \[\left( {\overrightarrow {GA} ,\;\overrightarrow {GB} } \right) = 120^\circ \]
Do đó \(\overrightarrow {GA} \,.\,\overrightarrow {GB} = GA\,.\,GB\,.\,\cos \left( {\overrightarrow {GA} ,\;\overrightarrow {GB} } \right) = \frac{a}{{\sqrt 3 }}\,.\,\frac{a}{{\sqrt 3 }}\,.\,\cos 120^\circ = - \frac{{{a^2}}}{6}\) nên C sai
Xác định được góc \[\left( {\overrightarrow {AB} ,\;\overrightarrow {AG} } \right)\] là góc ngoài của \[\widehat {GAB}\] nên \[\left( {\overrightarrow {AB} ,\;\overrightarrow {AG} } \right) = 30^\circ \]
Do đó \(\overrightarrow {AB} \,.\,\overrightarrow {AG} = AB\,.\,AG\,.\,\cos \left( {\overrightarrow {AB} ,\;\overrightarrow {AG} } \right) = a\,.\,\frac{a}{{\sqrt 3 }}\,.\,\cos 30^\circ = \frac{{{a^2}}}{2}\) nên D đúng
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[{\cos ^2}2x = \frac{{\cos 4x + 1}}{2} = \frac{1}{2}\cos 4x + \frac{1}{2}\]
Do đó nguyên hàm của hàm số f (x) = cos2 (2x) là:
\(\int {f\left( x \right)dx} = \int {\left( {\frac{1}{2}\cos 4x + \frac{1}{2}} \right)dx} = \frac{1}{8}\sin 4x + \frac{1}{2}x + C\).
Lời giải
Xếp 6 người chồng quanh bàn tròn có 5! cách.
Xếp các bà vợ vào ngồi cạnh chồng của mình, mỗi bà vợ có 2 vị trí ngồi nên có 26 cách.
Vậy số cách xếp là 5!.26 = 7680 cách.
Câu 3
A. \(\int\limits_{ - 1}^2 {\left( {2{x^2} - 2x - 4} \right)dx} \);
B. \(\int\limits_{ - 1}^2 {\left( { - 2x + 2} \right)dx} \);
C. \(\int\limits_{ - 1}^2 {\left( {2x - 2} \right)dx} \);
D. \(\int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. A(1; 2);
B. B(0; 2);
C. C(−1; 3);
D. \(D\left( {0;\; - \frac{1}{3}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.