Câu hỏi:
26/09/2023 127Một con súc sắc đồng chất được đổ 6 lần. Tính xác suất để được một số lớn hơn hay bằng 5 xuất hiện ít nhất 5 lần.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có n (Ω) = 6.6.6.6.6.6 = 66.
Có các trường hợp sau:
Số bằng 5 xuất hiện đúng 5 lần, lần còn lại xuất hiện 1 trong 5 số 1, 2, 3, 4, 6
Suy ra có \(C_6^5\,.\,C_5^1 = 30\) kết quả thuận lợi.
Số bằng 5 xuất hiện đúng 6 lần suy ra có 1 kết quả thuận lợi.
Số bằng 6 xuất hiện đúng 5 lần, lần còn lại xuất hiện 1 trong 5 số 1, 2, 3, 4, 5
Suy ra có \[C_6^5\,.\,C_5^1 = 30\] kết quả thuận lợi.
Số bằng 6 xuất hiện đúng 6 lần suy ra có 1 kết quả thuận lợi.
Vậy xác suất để được một số lớn hơn hay bằng 5 xuất hiện ít nhất 5 lần là
\[P = \frac{{30 + 1 + 30 + 1}}{{{6^6}}} = \frac{{31}}{{23\,\,328}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu cách xếp 6 cặp vợ chồng ngồi xung quanh một chiếc bàn tròn, sao cho mỗi bà đều ngồi cạnh chồng của mình?
Câu 3:
Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 6 < 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\) chứa điểm nào sau đây?
Câu 4:
Tính tổng các nghiệm nguyên của bất phương trình:
log2 (x2 + 3) − log2 x + x2 − 4x + 1 ≤ 0
Câu 5:
Cho đa giác đều 2018 đỉnh. Hỏi có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn 100°?
Câu 6:
Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?
Câu 7:
Trên mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1; 3), B(−2; −2), C(3; 1). Tính cosin góc A của tam giác.
về câu hỏi!