Câu hỏi:

26/09/2023 1,007

Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin A và B đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả A lẫn B và có thể tiếp nhận không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B. Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A. Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin A có giá 9 đồng và mỗi đơn vị vitamin B có giá 7,5 đồng.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin A và B (ảnh 1)

Gọi x ³ 0, y ³ 0 lần lượt là số đơn vị vitamin A và B để một người cần dùng trong một ngày.

Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị vitamin cả A lẫn B nên ta có: 400 ≤ x + y ≤ 1000.

Hàng ngày, tiếp nhận không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B nên ta có: x ≤ 600, y ≤ 500.

Mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A nên ta có: 0,5x ≤ y ≤ 3x.

Số tiền cần dùng mỗi ngày là: T (x, y) = 9x + 7,5.

Bài toán trở thành:

Tìm x ³ 0, y ³ 0 thỏa mãn hệ: \(\left\{ \begin{array}{l}0 \le x,\;y \le 600\\400 \le x + y \le 1000\\0,5x \le y \le 3x\end{array} \right.\) để T (x, y) = 9x + 7,5y đạt giá trị nhỏ nhất.

Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ như hình vẽ trên.

Miền nghiệm là lục giác ABCDEF với:

\(A\left( {\frac{{500}}{3};\;500} \right),\;B\left( {100;\;300} \right),\;C\left( {\frac{{800}}{3};\;\frac{{400}}{3}} \right),\;D\left( {600;\;300} \right),\;E\left( {600;\;400} \right),\;F\left( {500;\;500} \right)\)

Thay tọa độ các điểm A, B, C, D, E, F vào biểu thức T (x, y) = 9x + 7,5y và tìm GTNN của nó ta được:

\(T\;\left( {\frac{{500}}{3};\;500} \right) = 5250,\;T\;\left( {100;\;300} \right) = 3150,\;T\;\left( {\frac{{800}}{3};\;\frac{{400}}{3}} \right) = 3400\)

T (600; 300) = 7650, T (600; 400) = 8400, T (500; 500) = 8250

Suy ra min T (x; y) = 3150 khi x = 100; y = 300.

Vậy mỗi ngày, một người dùng 100 đơn vị Vitamin A, 300 đơn vị Vitamin B để chi phí rẻ nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm nguyên hàm của hàm số f (x) = cos2 (2x).

Xem đáp án » 11/07/2024 12,741

Câu 2:

Có bao nhiêu cách xếp 6 cặp vợ chồng ngồi xung quanh một chiếc bàn tròn, sao cho mỗi bà đều ngồi cạnh chồng của mình?

Xem đáp án » 11/07/2024 12,153

Câu 3:

Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 6 < 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\) chứa điểm nào sau đây?

Xem đáp án » 26/09/2023 7,713

Câu 4:

Cho đa giác đều 2018 đỉnh. Hỏi có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn 100°?

Xem đáp án » 11/07/2024 6,815

Câu 5:

Tính tổng các nghiệm nguyên của bất phương trình:

log2 (x2 + 3) − log2 x + x2 − 4x + 1 ≤ 0

Xem đáp án » 11/07/2024 6,716

Câu 6:

Trên mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1; 3), B(−2; −2), C(3; 1). Tính cosin góc A của tam giác.

Xem đáp án » 11/07/2024 5,006

Câu 7:

Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?

Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức  (ảnh 1)

Xem đáp án » 26/09/2023 4,600

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store