Câu hỏi:

26/09/2023 3,597

Cho phương trình \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\) (*). Có bao nhiêu giá trị nguyên của tham số m [–2019; 2019] để phương trình (*) có nghiệm?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Điều kiện:\({\rm{ }}\left\{ {\begin{array}{*{20}{l}}{x > 0}\\{m + {{\log }_2}x \ge 0}\end{array}} \right.\)

Ta có: \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\)

\( \Leftrightarrow 4\log _2^2x - 8{\log _2}x - 4\sqrt {m + {{\log }_2}x} = 4m\)

\( \Leftrightarrow 4\log _2^2x - 4{\log _2}x + 1 = 4\sqrt {m + {{\log }_2}x} + 4\left( {m + {{\log }_2}x} \right) + 1\)

\( \Leftrightarrow {\left( {2{{\log }_2}x - 1} \right)^2} = {\left( {2\sqrt {m + {{\log }_2}x} + 1} \right)^2}\)

\( \Leftrightarrow \left[ \begin{array}{l}2{\log _2}x - 1 = 2\sqrt {m + {{\log }_2}x} + 1\\ - 2{\log _2}x + 1 = 2\sqrt {m + {{\log }_2}x} + 1\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{\log _2}x - 1 = \sqrt {m + {{\log }_2}x} \\ - {\log _2}x = \sqrt {m + {{\log }_2}x} \end{array} \right.\)

Xét phương trình \(lo{g_2}x - 1 = \sqrt {m + {{\log }_2}x} \)     (1)

\(\begin{array}{l} \Leftrightarrow {\left( {lo{g_2}x - 1} \right)^2} = {\left( {\sqrt {m + {{\log }_2}x} } \right)^2}\\ \Leftrightarrow \log _2^2x - 2{\log _2}x + 1 - m - {\log _2}x = 0\\ \Leftrightarrow \log _2^2x - 3{\log _2}x + 1 - m = 0\end{array}\)

Phương trình (1) có nghiệm

\(\begin{array}{l} \Leftrightarrow \Delta \ge 0 \Leftrightarrow 9 - 4\left( {1 - m} \right) \ge 0\\ \Leftrightarrow 5 + 4m \ge 0\\ \Leftrightarrow m \ge \frac{{ - 5}}{4}\end{array}\)

Xét phương trình \( - lo{g_2}x = \sqrt {m + {{\log }_2}x} \)       (2)

\(\begin{array}{l} \Leftrightarrow {\left( { - lo{g_2}x} \right)^2} = {\left( {\sqrt {m + {{\log }_2}x} } \right)^2}\\ \Leftrightarrow \log _2^2x - {\log _2}x - m = 0\end{array}\)

Phương trình (2) có nghiệm

\(\begin{array}{l} \Leftrightarrow \Delta \ge 0\\ \Leftrightarrow 1 + 4m \ge 0\\ \Leftrightarrow m \ge \frac{{ - 1}}{4}\end{array}\)

ĐểPt (*) có nghiệm thì ít nhất một trong 2 phương trình (1) hoặc (2) phải có nghiệm

Từ đề bài ta suy ra \(\frac{{ - 5}}{4} \le m \le 2019\)

Suy ra có \(\frac{{2019 + 1}}{1} + 1 = 2021\) giátrịnguyên của m thỏa mãn bài toán

Vậy ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có sô nghiệm của phương trình f(x) = m bằng số giao điềm của đồ thị hàm số y = f(x) và đường thẳng y = m

Do đó, dựa vào bàng biến thiên ta thấy, phương trình f(x) = m có 3 nghiệm phân biệt khi và chỉ khi 0 < m < 3

Kết hợp điều kiện \(m \in \mathbb{Z}\) suy ra \(m \in \{ 1;2\} \)

Do đó có 2 giá trị nguyên của tham số m thòa mãn yêu cầu bài toán

Vậy ta chọn đáp án D.

Lời giải

Đặt \(f(x) = {x^2} - 4x + m\)

Để phương trình có 2 nghiệm thỏa mãn \(0 < {x_1} < {x_2} < 3\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta ' > 0}\\{f(0) > 0}\\{f(3) > 0}\\{0 < \frac{S}{2} < 3}\end{array} \Leftrightarrow \left\{ \begin{array}{l}{4^2} - 4m > 0\\0 + m > 0\\{3^2} - 4.3 + m > 0\\0 < \frac{4}{2} < 3\end{array} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{4 - m > 0}\\{m > 0}\\{m - 3 > 0}\\{0 < 2 < 3}\end{array} \Leftrightarrow 3 < m < 4} \right.} \right.\)

Vậy 3 < m < 4.

Câu 3

Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình f(x) < ex + m đúng với mọi x thuộc (-1; 1) khi và chỉ khi: A. m  (ảnh 1)

Bất phương trình f(x) < ex + m đúng với mọi x (–1; 1) khi và chỉ khi:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay