Câu hỏi:
11/07/2024 5,805Cho tứ diện ABCD. Trên các cạnh AB, AC, BD lần lượt lấy các điểm E, F, G sao cho EB > AE, AF > FC, BG > GD. Tìm giao tuyến của các cặp mặt phẳng (EFG) và (ACD), (EFG) và (BCD), (EFG) và (ABD).
Quảng cáo
Trả lời:
⦁ Ta có EF ⊂ (ABC) và EF ⊂ (EFG) nên (EFG) ∩ (ABC) = EF.
⦁ Trong mặt phẳng (ABC), gọi I là giao điểm của EF và BC.
Trong mặt phẳng (BCD), gọi H là giao điểm của IG và CD.
Ta có H ∈ IG, mà IG ⊂ (EFG) nên H ∈ (EFG)
Lại có F ∈ (EFG) nên FH ⊂ (EFG) (1)
Ta cũng có F ∈ AC, mà AC ⊂ (ACD)
H ∈ CD, mà CD ⊂ (ACD)
Do đó FH ⊂ (ACD) (2)
Từ (1) và (2) suy ra (EFG) ∩ (ACD) = FH.
⦁ Tương tự, ta cũng có:
HG ⊂ (EFG) và HG ⊂ (BCD) nên (EFG) ∩ (BCD) = HG;
GE ⊂ (EFG) và GE ⊂ (ABD) nên (EFG) ∩ (ABD) = GE.
Vậy (EFG) ∩ (ACD) = FH, (EFG) ∩ (BCD) = HG, (EFG) ∩ (ABD) = GE.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) ⦁ Trong mặt phẳng (ABCD), gọi O = AC ∩ BD.
Ta có O ∈ AC, AC ⊂ (SAC) nên O ∈ (SAC)
O ∈ BD, BD ⊂ (SBD) nên O ∈ (SBD)
Do đó O ∈ (SAC) ∩ (SBD)
⦁ Lại có S ∈ (SAC) và S ∈ (SBD) nên S ∈ (SAC) ∩ (SBD)
Suy ra (SAC) ∩ (SBD) = SO.
Trong mặt phẳng (SBD), gọi I = EF ∩ SO.
Ta có I ∈ SO, SO ⊂ (SAC) nên I ∈ (SAC)
Vậy EF ∩ (SAC) = I.
b) ⦁ Trong mặt phẳng (SBD), gọi K = EF ∩ BD.
Ta có K ∈ EF, EF ⊂ (AEF) nên K ∈ (AEF);
K ∈ BD, BD ⊂ (ABCD) nên K ∈ (ABCD)
Do đó K ∈ (ABCD) ∩ (AEF).
Lại có A ∈ (ABCD) và ∈ (AEF) nên A = (ABCD) ∩ (AEF).
Suy ra (ABCD) ∩ (AEF) = AK.
⦁ Trong mặt phẳng (ABCD), gọi H = BC ∩ AK.
Ta có H ∈ AK, AK ⊂ (AEF) nên H ∈ (AEF).
Vậy BC ∩ (AEF) = H.
Lời giải
Ta có: I là giao điểm của DE và AB.
Suy ra:
⦁ I ∈ DE, mà DE ⊂ (DEF) nên I ∈ (DEF);
⦁ I ∈ AB, mà AB ⊂ (ABC) nên I ∈ (ABC).
Do đó I ∈ (DEF) ∩ (ABC).
Tương tự, ta có J, K cũng thuộc giao tuyến của hai mặt phẳng (DEF), (ABC).
Vậy I, J, K thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận