Câu hỏi:
11/07/2024 4,116Cho tứ diện ABCD. Trên các cạnh AB, AC, BD lần lượt lấy các điểm E, F, G sao cho EB > AE, AF > FC, BG > GD. Tìm giao tuyến của các cặp mặt phẳng (EFG) và (ACD), (EFG) và (BCD), (EFG) và (ABD).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
⦁ Ta có EF ⊂ (ABC) và EF ⊂ (EFG) nên (EFG) ∩ (ABC) = EF.
⦁ Trong mặt phẳng (ABC), gọi I là giao điểm của EF và BC.
Trong mặt phẳng (BCD), gọi H là giao điểm của IG và CD.
Ta có H ∈ IG, mà IG ⊂ (EFG) nên H ∈ (EFG)
Lại có F ∈ (EFG) nên FH ⊂ (EFG) (1)
Ta cũng có F ∈ AC, mà AC ⊂ (ACD)
H ∈ CD, mà CD ⊂ (ACD)
Do đó FH ⊂ (ACD) (2)
Từ (1) và (2) suy ra (EFG) ∩ (ACD) = FH.
⦁ Tương tự, ta cũng có:
HG ⊂ (EFG) và HG ⊂ (BCD) nên (EFG) ∩ (BCD) = HG;
GE ⊂ (EFG) và GE ⊂ (ABD) nên (EFG) ∩ (ABD) = GE.
Vậy (EFG) ∩ (ACD) = FH, (EFG) ∩ (BCD) = HG, (EFG) ∩ (ABD) = GE.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt là hai điểm trên hai cạnh SB, SD.
a) Tìm giao điểm của EF với (SAC).
b) Tìm giao điểm của BC với (AEF).
Câu 2:
Cho hình chóp S.ABCD. Gọi D, E, F lần lượt là ba điểm trên ba cạnh SA, SB, SC sao cho DE cắt AB tại I, EF cắt BC tại J, FD cắt CA tại K. Chứng minh ba điểm I, J, K thẳng hàng.
Câu 3:
Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD sao cho EF cắt BC tại I, AD cắt EG tại H. Chứng minh ba đường thẳng CD, IG, HF cùng đi qua một điểm.
về câu hỏi!