Câu hỏi:
11/07/2024 5,273Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho I; J lần lượt là trung điểm của BD, CD.
a) Chứng minh rằng MN // BC.
b) Tứ giác MNJI là hình gì. Tìm điểu kiện để tứ giác MNJI là hình bình hành.
Quảng cáo
Trả lời:
a) Xét ∆ABC có suy ra MN // BC (định lý Thalès đảo).
b) Xét ∆BCD có I, J lần lượt là trung điểm của BD, CD nên IJ là đường trung bình của tam giác DBC, suy ra IJ // BC.
Mà MN // BC (câu a) nên IJ // MN, do đó MNJI là hình thang.
MNJI là hình bình hành khi và chỉ khi MI // NJ // AD
Suy ra MI là đường trung bình của tam giác ADB.
Mà I là trung điểm của BD nên M là trung điểm AB.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Tìm giao tuyến của các mặt phẳng:
a) (SAD) và (SBC);
b) (SAB) và (MDC), với M là một điểm bất kì thuộc cạnh SA.
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD.
a) Tìm các giao tuyến: d1 = (SAB) ∩ (SCD); d2 = (SCD) ∩ (MAB).
b) Chứng minh d1 // d2.
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AD. Gọi I và J lần lượt là trọng tâm của các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD tại P, Q.
a) Chứng minh MN song song với PQ.
b) Gọi E là giao điểm của AM và BP, F là giao điểm của CQ và DN. Chứng minh EF song song với MN và PQ.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận