Câu hỏi:
11/07/2024 13,237Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Tìm giao tuyến của các mặt phẳng:
a) (SAD) và (SBC);
b) (SAB) và (MDC), với M là một điểm bất kì thuộc cạnh SA.
Quảng cáo
Trả lời:
a) Ta có S ∈ (SAD) và S ∈ (SBC) nên S ∈ (SAD) ∩ (SBC),
Mặt khác, AD ⊂ (SAD), BC ⊂ (SBC) và AD // BC (do ABCD là hình bình hành)
Suy ra (SAD) ∩ (SBC) = d với d là đường thẳng đi qua S, d //AD // BC.
b) Ta có M ∈ SA, mà SA ∈ (SAB) nên M ∈ (SAB);
Lại có M ∈ (MDC)
Nên M ∈ (SAB) ∩ (MDC).
Ta có AB ⊂ (SAB), DC ⊂ (MDC) và AB // DC (do ABCD là hình bình hành).
Suy ra (SAB) ∩ (MDC) = Mx với Mx // AB // DC.
Gọi N là giao điểm của SB và Mx.
Khi đó (SAB) ∩ (MDC) = MN.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) • S ∈ (SAD) và S ∈ (SBC) nên S ∈ (SAB) ∩ (SDC).
Mặt khác có AB ⊂ (SAB), CD ⊂ (SDC) và AB // CD (do ABCD là hình thang)
Suy ra (SAB) ∩ (SCD) = d1 với d1 là đường thẳng đi qua S và d1 // AB // CD.
• Ta có M ∈ SD, mà SD ∈ (SCD) nên M ∈ (SCD)
Lại có M ∈ (MAB)
Suy ra (SCD) ∩ (MAB) = M
Mặt khác có AB ⊂ (MAB), CD ⊂ (SCD) và AB // CD
Suy ra (SCD) ∩ (MAB) = d2 với d2 là đường thẳng đi qua M và d2 // AB // CD.
b) Theo câu a, ta có d1 // AB // CD và d2 // AB // CD
Suy ra d1 // d2.
Lời giải
a) • ABCD là hình thang nên AD // BC
Ta có: M ∈ SB, mà SB ⊂ (SBC) nên M ∈ (SBC);
M ∈ (ADJ)
Do đó M ∈ (ADJ) ∩ (SBC).
Tương tự, N ∈ (ADJ) ∩ (SBC).
Suy ra (ADJ) ∩ (SBC) = MN
Mà AD // BC; AD ⊂ (ADJ); BC ⊂ (SBC);
Suy ra MN // AD // BC. (1)
• Chứng minh tương tự như trên, ta cũng có PQ // AD // BC. (2)
Từ (1), (2) suy ra MN // PQ.
b) Ta có: E ∈ AM, mà AM ⊂ (ADJ) nên E ∈ (ADJ);
E ∈ BP, mà BP ⊂ (IBC) nên E ∈ (IBC).
Do đó E ∈ (ADJ) ∩ (IBC).
Tương tự ta cũng có F ∈ (ADJ) ∩ (IBC).
Suy ra (ADJ) ∩ (IBC) = EF.
Mà AD // BC, AD ⊂ (ADJ), BC ⊂ (IBC).
Suy ra EF // AD // BC
Lại có MN // PQ // AD // BC (chứng minh câu a)
Do đó EF // MN // PQ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận