Câu hỏi:

13/07/2024 9,912

Cho hai hàm số bậc nhất y = 2mx + 1 và y = (m – 1)x + 2. Tìm các giá trị của m để đồ thị của hai hàm số đã cho là:

a) Hai đường thẳng song song với nhau.

b) Hai đường thẳng cắt nhau

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để hàm số y = 2mx + 1 là hàm số bậc nhất thì 2m ≠ 0, tức là m ≠ 0.

Để hàm số y = (m – 1)x + 2 là hàm số bậc nhất thì m – 1 ≠ 0, tức là m ≠ 1.

Vậy ta có điều kiện là m ≠ 0 và m ≠ 1.

a) Đồ thị của hai hàm số đã cho là hai đường thẳng song song khi a = a′ và b ≠ b', tức là 2m = m – 1 và 1 ≠ 2 (luôn đúng).

Ta có 2m = m – 1, suy ra m = – 1 (thỏa mãn điều kiện).

Vậy m = – 1 thì thỏa mãn yêu cầu bài toán.

b) Đồ thị của hai hàm số đã cho là hai đường thẳng cắt nhau khi a ≠ a′, tức là

2m ≠ m – 1 hay m ≠ – 1.

Kết hợp với điều kiện, ta được các giá trị m cần tìm là m ≠ 0, m ≠ 1, m ≠ – 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi hàm số cần tìm là y = ax + b (a ≠ 0).

Vì đồ thị hàm số là đường thẳng có hệ số góc bằng 3 nên a = 3 hay y = 3x + b.

Hàm số bậc nhất có đồ thị là đường thẳng đi qua điểm (1; –2) , thay x = 1y = –2 vào công thức hàm số, ta được:

– 2 = 3 . 1 + b, tức là b = – 5.

Vậy ta có hàm số là y = 3x – 5.

Lời giải

Gọi y = ax + b là hàm số cần tìm (a ≠ 0).

Vì đồ thị của hàm số song song với đường thẳng y = –3x + 1 nên a = –3 và b ≠ 1.

Suy ra y = – 3x + 1 (b ≠ 1).

Lại có, đồ thị hàm số là đường thẳng đi qua điểm (2; 6) nên ta có: 

6 = –3 . 2 + b, suy ra b = 12 (thỏa mãn điều kiện b ≠ 1).

Vậy hàm số cần tìm là y = –3x + 12.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP