Câu hỏi:

20/10/2023 1,617

Cho hai mặt phẳng (P) và (Q) song song với nhau và đường thẳng ∆ vuông góc với (P). Gọi b là một đường thẳng bất kì thuộc (Q). Lấy một đường thẳng a thuộc (P) sao cho a song song với b (H.7.23). So sánh (∆, b) và (∆, a). Từ đó rút ra mối quan hệ giữa ∆ và (Q).

Cho hai mặt phẳng (P) và (Q) song song với nhau và đường thẳng ∆ vuông góc với (P). Gọi b là một đường thẳng bất kì thuộc (Q). Lấy một đường thẳng a thuộc (P) sao cho a song song với b (H.7.23). So sánh (∆, b) và (∆, a). Từ đó rút ra mối quan hệ giữa ∆ và (Q).   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

D ^ (P) mà a thuộc (P) nên (D, a) = 90°.

Lại có a // b nên (D, a) = (D, b) = 90°.

Vì (D, b) = 90° nên D ^ b mà b là đường thẳng bất kì thuộc (Q) nên D ^ (Q).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình chữ nhật và  . Gọi M, N tương ứng là hình chiếu của A trên SB, SD. Chứng minh rằng:  . (ảnh 1)

- Vì SA ^ (ABCD) nên SA ^ BC.

Do ABCD là hình chữ nhật nên BC ^ AB mà SA ^ BC nên BC ^ (SAB), suy ra BC ^ AM.

Lại có, M là hình chiếu của A trên SB nên AM ^ SB.

Vì AM ^ SB và BC ^ AM nên AM ^ (SBC).

- Vì SA ^ (ABCD) nên SA ^ CD.

Do ABCD là hình chữ nhật nên AD ^ CD.

Vì AD ^ CD và SA ^ CD nên CD ^ (SAD), suy ra CD ^ AN.

Do N là hình chiếu của A trên SD nên AN ^ SD.

Vì AN ^ SD và CD ^ AN nên AN ^ (SCD).

- Do AM ^ (SBC) nên AM ^ SC và AN ^ (SCD) nên AN ^ SC.

Vì AM ^ SC và AN ^ SC nên SC ^ (AMN).

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và  . Chứng minh rằng các mặt bên của hình chóp S.ABCD là các tam giác vuông. (ảnh 1)

Vì SA ^ (ABCD) nên SA ^ AD, SA ^ AB, SA ^ BC, SA ^ CD.

Do ABCD là hình chữ nhật nên AB ^ BC, AD ^ DC.

Vì SA ^ AB nên tam giác SAB vuông tại A.

Vì SA ^ AD nên tam giác SAD vuông tại A.

Vì SA ^ BC và AB ^ BC nên BC ^ (SAB), suy ra BC ^ SB hay tam giác SBC vuông tại B.

Vì SA ^ CD và AD ^ DC nên CD ^ (SAD), suy ra CD ^ SD hay tam giác SCD vuông tại D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP