Câu hỏi:

20/10/2023 547

Cho hai mặt phẳng (P) và (Q) cùng vuông góc với đường thẳng ∆. Xét O là một điểm thuộc mặt phẳng (P) nhưng không thuộc mặt phẳng (Q). Gọi (R) là mặt phẳng đi qua O và song song với (Q). (H.7.24).

Cho hai mặt phẳng (P) và (Q) cùng vuông góc với đường thẳng ∆. Xét O là một điểm thuộc mặt phẳng (P) nhưng không thuộc mặt phẳng (Q). Gọi (R) là mặt phẳng đi qua O và song song với (Q). (H.7.24).   a) Hỏi (R) có vuông góc với ∆ hay không ? Nêu nhận xét về vị trí tương đối giữa (P) và (R). (ảnh 1)

 

a) Hỏi (R) có vuông góc với ∆ hay không ? Nêu nhận xét về vị trí tương đối giữa (P) và (R).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Do D ^ (Q) mà (Q) // (R) nên D ^ (R).

Do D ^ (R) và D ^ (P) mà (P) và (R) cùng đi qua O nên (P) và (R) trùng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình chữ nhật và  . Gọi M, N tương ứng là hình chiếu của A trên SB, SD. Chứng minh rằng:  . (ảnh 1)

- Vì SA ^ (ABCD) nên SA ^ BC.

Do ABCD là hình chữ nhật nên BC ^ AB mà SA ^ BC nên BC ^ (SAB), suy ra BC ^ AM.

Lại có, M là hình chiếu của A trên SB nên AM ^ SB.

Vì AM ^ SB và BC ^ AM nên AM ^ (SBC).

- Vì SA ^ (ABCD) nên SA ^ CD.

Do ABCD là hình chữ nhật nên AD ^ CD.

Vì AD ^ CD và SA ^ CD nên CD ^ (SAD), suy ra CD ^ AN.

Do N là hình chiếu của A trên SD nên AN ^ SD.

Vì AN ^ SD và CD ^ AN nên AN ^ (SCD).

- Do AM ^ (SBC) nên AM ^ SC và AN ^ (SCD) nên AN ^ SC.

Vì AM ^ SC và AN ^ SC nên SC ^ (AMN).

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và  . Chứng minh rằng các mặt bên của hình chóp S.ABCD là các tam giác vuông. (ảnh 1)

Vì SA ^ (ABCD) nên SA ^ AD, SA ^ AB, SA ^ BC, SA ^ CD.

Do ABCD là hình chữ nhật nên AB ^ BC, AD ^ DC.

Vì SA ^ AB nên tam giác SAB vuông tại A.

Vì SA ^ AD nên tam giác SAD vuông tại A.

Vì SA ^ BC và AB ^ BC nên BC ^ (SAB), suy ra BC ^ SB hay tam giác SBC vuông tại B.

Vì SA ^ CD và AD ^ DC nên CD ^ (SAD), suy ra CD ^ SD hay tam giác SCD vuông tại D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP