Câu hỏi:

20/10/2023 1,657

Một chiếc bàn có các chân cùng vuông góc với mặt phẳng chứa mặt bàn và mặt phẳng chứa mặt sàn. Hỏi hai mặt phẳng đó có song song với nhau hay không ? Vì sao ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta coi chân bàn như đường thẳng, mặt bàn và mặt sàn là hai mặt phẳng.

Một chiếc bàn có các chân cùng vuông góc với mặt phẳng chứa mặt bàn và mặt phẳng chứa mặt sàn thì hai mặt phẳng đó song song với nhau vì hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình chữ nhật và  . Gọi M, N tương ứng là hình chiếu của A trên SB, SD. Chứng minh rằng:  . (ảnh 1)

- Vì SA ^ (ABCD) nên SA ^ BC.

Do ABCD là hình chữ nhật nên BC ^ AB mà SA ^ BC nên BC ^ (SAB), suy ra BC ^ AM.

Lại có, M là hình chiếu của A trên SB nên AM ^ SB.

Vì AM ^ SB và BC ^ AM nên AM ^ (SBC).

- Vì SA ^ (ABCD) nên SA ^ CD.

Do ABCD là hình chữ nhật nên AD ^ CD.

Vì AD ^ CD và SA ^ CD nên CD ^ (SAD), suy ra CD ^ AN.

Do N là hình chiếu của A trên SD nên AN ^ SD.

Vì AN ^ SD và CD ^ AN nên AN ^ (SCD).

- Do AM ^ (SBC) nên AM ^ SC và AN ^ (SCD) nên AN ^ SC.

Vì AM ^ SC và AN ^ SC nên SC ^ (AMN).

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và  . Chứng minh rằng các mặt bên của hình chóp S.ABCD là các tam giác vuông. (ảnh 1)

Vì SA ^ (ABCD) nên SA ^ AD, SA ^ AB, SA ^ BC, SA ^ CD.

Do ABCD là hình chữ nhật nên AB ^ BC, AD ^ DC.

Vì SA ^ AB nên tam giác SAB vuông tại A.

Vì SA ^ AD nên tam giác SAD vuông tại A.

Vì SA ^ BC và AB ^ BC nên BC ^ (SAB), suy ra BC ^ SB hay tam giác SBC vuông tại B.

Vì SA ^ CD và AD ^ DC nên CD ^ (SAD), suy ra CD ^ SD hay tam giác SCD vuông tại D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP