Câu hỏi:
11/07/2024 8,175Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là chân các đường vuông góc hạ từ H xuống AB, AC và M là trung điểm của BC. Chứng minh rằng:
a) EF = AH.
b) AM ⊥ EF.
Câu hỏi trong đề: Giải SBT Toán 8 KNTT Bài tập ôn tập cuối năm có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a)Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = 90^\circ \).
Vì E, F lần lượt là chân các đường vuông góc hạ từ H xuống AB, AC nên HE vuông góc với AB, HF vuông góc với AC.
Do đó, \(\widehat {HEB} = \widehat {HEA} = \widehat {HFA} = \widehat {HFC} = 90^\circ \).
Xét tứ giác AFHE có: \(\widehat {BAC} = \widehat {HEA} = \widehat {HFA} = 90^\circ \).
Do đó, tứ giác AFHE là hình chữ nhật.
Suy ra AH = FE (hai đường chéo bằng nhau).
b) Vì tứ giác AFHE là hình chữ nhật nên \(\widehat {FHE} = 90^\circ \).
Vì AM là đường trung tuyến trong tam giác ABC vuông tại A nên
AM = MB = MC = \(\frac{1}{2}BC\).
Tam giác AMB có AM = MB nên tam giác AMB cân tại M.
Do đó, \(\widehat {MAB} = \widehat B\).
Lại có \(\widehat B = \widehat {AHE}\,\,\,\,\,\left( { = 90^\circ - \widehat {HEB}} \right)\).
Nên \(\widehat {MAB} = \widehat {AHE}\) (1).
Gọi O là giao điểm của hai đường chéo FE và AH của hình chữ nhật AFHE.
Do đó, OH = OE = OF = OA.
Tam giác OAE có OA = OE nên tam giác OAE cân tại O.
Suy ra \(\widehat {OEA} = \widehat {OAE}\).
Mà AE song song với FH (do AFHE là hình chữ nhật) nên \(\widehat {OHF} = \widehat {OAE}\) (hai góc so le trong).
Do đó, \(\widehat {OEA} = \widehat {OHF}\) (2).
Lại có \(\widehat {OHF} + \widehat {OHE} = \widehat {FHE} = 90^\circ \) (3).
Từ (1), (2), (3) ta có: \[\widehat {MAB} + \widehat {OEA} = 90^\circ \].
Gọi K là giao điểm của AM và EF. Khi đó, \[\widehat {KAE} + \widehat {KEA} = 90^\circ \]. Suy ra \(\widehat {AKE} = 90^\circ \).
Vậy AM vuông góc với EF tại K.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Hàm số y = (3m + 1)x – 2m là hàm số bậc nhất khi 3m + 1 ≠ 0, tức là m ≠ \(\frac{{ - 1}}{3}\).
b) Vì đồ thị hàm số đã cho là đường thẳng song song với đường thẳng y = –2x + 5 nên
3m + 1 = –2 và –2m ≠ 5.
Tức là m = –1 và m ≠ \(\frac{{ - 5}}{2}\). Suy ra m = – 1.
Vậy m = – 1.
c) Với m = –1, ta có y = –2x + 2.
Đồ thị hàm số y = –2x + 2 là đường thẳng đi qua hai điểm A(0; 2), B(1; 0) như hình dưới đây.
Lời giải
Lời giải
a) Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = 90^\circ \).
Vì P, N lần lượt là trung điểm của AC, BC nên PN là đường trung bình của tam giác ABC, suy ra PN // AB.
Vì M, N lần lượt là trung điểm của AB, BC nên MN là đường trung bình của tam giác ABC, suy ra MN // AC.
Xét tứ giác AMNP có:
NP // AM (do PN // AB),
NM // AP (do MN // AC).
Do đó, tứ giác AMNP là hình bình hành.
Mà \(\widehat {PAM} = 90^\circ \) (do \(\widehat {BAC} = 90^\circ \)) nên tứ giác AMNP là hình chữ nhật.
b) Tứ giác BMKP có:
BM // KP (do PN // AB),
BP // KM (gt).
Nên tứ giác BMKP là hình bình hành.
c) Ta có \(PN = \frac{1}{2}AB = AM = MB\) (do PN là đường trung bình của tam giác ABC và M là trung điểm của AB).
Vì tứ giác BMKP là hình bình hành nên KP = MB.
Do đó, KP = PN. Suy ra P là trung điểm của KN.
Vì PN song song với AB (cmt) mà AB vuông góc với AC nên KN vuông góc với AC tại P.
Tứ giác ANCK có hai đường chéo AC và KN cắt nhau tại trung điểm P của mỗi đường nên ANCK là hình bình hành.
Mà KN vuông góc với AC tại P.
Do đó, tứ giác ANCK là hình thoi.
d) Để hình thoi ANCK là hình vuông thì AC = KN.
Mà KN = 2PN = \(2 \cdot \frac{1}{2}AB\) = AB.
Do đó, AC = AB. Mà tam giác ABC vuông tại A. Do đó, tam giác ABC vuông cân tại A.
Vậy khi tam giác ABC vuông cân tại A thì tứ giác ANCK là hình vuông.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận