Câu hỏi:

11/07/2024 3,136

Cho tam giác ABC có đường cao AH. Lấy các điểm E, F lần lượt trên AB, AC sao cho HE, HF lần lượt vuông góc với AB, AC. Lấy điểm D trên EF sao cho AD vuông góc với EF. Đường thẳng AD cắt BC tại M. Chứng minh rằng:

a) AE . AB = AF . AC.

b) ∆ADE ∆AHC và ∆ANF ∆AMB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì AH là đường cao của tam giác ABC nên \(\widehat {AHB} = \widehat {AHC} = 90^\circ \).

Vì HE, HF vuông góc với AB, AC nên ta có:

\(\widehat {HEB} = \widehat {HEA} = \widehat {HFA} = \widehat {HFC} = 90^\circ \).

Tam giác HEA và tam giác BHA có:

\(\widehat {HEA} = \widehat {AHB} = 90^\circ \)

\(\widehat {BAH}\) chung

Do đó, ∆HEA ∆BHA (g.g).

Suy ra \(\frac{{AE}}{{AH}} = \frac{{AH}}{{AB}}\) nên AE . AB = AH2 (1).

Tam giác HFA và tam giác CHA có:

\(\widehat {HFA} = \widehat {AHC} = 90^\circ \)

\(\widehat {CAH}\) chung

Do đó, ∆HFA ∆CHA (g.g).

Suy ra \(\frac{{AF}}{{AH}} = \frac{{AH}}{{AC}}\) nên AF . AC = AH2 (2).

Từ (1) và (2) suy ra AE . AB = AF . AC.

b) Vì AE . AB = AF . AC nên \(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\).

Tam giác AEF và tam giác ACB có:

\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\)

\(\widehat {BAC}\) chung

Do đó, ∆AEF ∆ACB (c.g.c).

Suy ra \(\widehat {AEF} = \widehat C\).

Tam giác AED và tam giác ACH có:

\(\widehat {ADE} = \widehat {AHC} = 90^\circ \)

\(\widehat {AEF} = \widehat C\) (cmt)

Do đó, ∆ADE ∆AHC (g.g).

Suy ra \(\widehat {EAD} = \widehat {CAH}\).

Do đó, \(\widehat {NAF} = \widehat {CAH} = \widehat {EAD} = \widehat {MAB}\).

Hai tam giác ANF và AMB có:

\(\widehat {NAF} = \widehat {MAB}\) (chứng minh trên)

\(\widehat {AFN} = \widehat {AFE} = \widehat {ABC} = \widehat {ABM}\) (do ∆AEF ∆ACB)

Do đó ∆ANF ∆AMB (g.g).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a)Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = 90^\circ \).

Vì E, F lần lượt là chân các đường vuông góc hạ từ H xuống AB, AC nên HE vuông góc với AB, HF vuông góc với AC.

Do đó, \(\widehat {HEB} = \widehat {HEA} = \widehat {HFA} = \widehat {HFC} = 90^\circ \).

Xét tứ giác AFHE có: \(\widehat {BAC} = \widehat {HEA} = \widehat {HFA} = 90^\circ \).

Do đó, tứ giác AFHE là hình chữ nhật.

Suy ra AH = FE (hai đường chéo bằng nhau).

b) Vì tứ giác AFHE là hình chữ nhật nên \(\widehat {FHE} = 90^\circ \).

Vì AM là đường trung tuyến trong tam giác ABC vuông tại A nên

AM = MB = MC = \(\frac{1}{2}BC\).

Tam giác AMB có AM = MB nên tam giác AMB cân tại M.

Do đó, \(\widehat {MAB} = \widehat B\).

Lại có \(\widehat B = \widehat {AHE}\,\,\,\,\,\left( { = 90^\circ - \widehat {HEB}} \right)\).

Nên \(\widehat {MAB} = \widehat {AHE}\) (1).

Gọi O là giao điểm của hai đường chéo FE và AH của hình chữ nhật AFHE.

Do đó, OH = OE = OF = OA.

Tam giác OAE có OA = OE nên tam giác OAE cân tại O.

Suy ra \(\widehat {OEA} = \widehat {OAE}\).

Mà AE song song với FH (do AFHE là hình chữ nhật) nên \(\widehat {OHF} = \widehat {OAE}\) (hai góc so le trong).

Do đó, \(\widehat {OEA} = \widehat {OHF}\) (2).

Lại có \(\widehat {OHF} + \widehat {OHE} = \widehat {FHE} = 90^\circ \) (3).

Từ (1), (2), (3) ta có: \[\widehat {MAB} + \widehat {OEA} = 90^\circ \].

Gọi K là giao điểm của AM và EF. Khi đó, \[\widehat {KAE} + \widehat {KEA} = 90^\circ \]. Suy ra \(\widehat {AKE} = 90^\circ \).

Vậy AM vuông góc với EF tại K.

Lời giải

Lời giải

a) Hàm số y = (3m + 1)x – 2m là hàm số bậc nhất khi 3m + 1 ≠ 0, tức là m ≠ \(\frac{{ - 1}}{3}\).

b) Vì đồ thị hàm số đã cho là đường thẳng song song với đường thẳng y = –2x + 5 nên

3m + 1 = –2 và –2m ≠ 5.

Tức là m = –1 và m ≠ \(\frac{{ - 5}}{2}\). Suy ra m = – 1.

Vậy m = – 1.

c) Với m = –1, ta có y = –2x + 2.

Đồ thị hàm số y = –2x + 2 là đường thẳng đi qua hai điểm A(0; 2), B(1; 0) như hình dưới đây.

Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP