Câu hỏi:
13/07/2024 2,379Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Chứng mình rằng:
HA . HD = HB . HE = HC . HF.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Xét ∆HEA vuông tại E và ∆HDB vuông tại D có \[\widehat {AHE} = \widehat {BHD}\] (đối đỉnh).
Do đó ∆HEA ᔕ ∆HDB (g.g).
Suy ra \[\frac{{HE}}{{HD}} = \frac{{HA}}{{HB}}\]. Do đó HA . HD = HB . HE (1)
Xét ∆HFA vuông tại F và ∆HDC vuông tại D có \[\widehat {AHF} = \widehat {CHD}\] (đối đỉnh).
Do đó ∆HFA ᔕ ∆HDC (g.g).
Suy ra \[\frac{{HF}}{{HD}} = \frac{{HA}}{{HC}}\]. Do đó HA . HD = HC . HF (2)
Từ (1) và (2) suy ra HA . HD = HB . HE = HC . HF (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nếu ∆ABC ᔕ ∆MNP theo tỉ số \[k = \frac{2}{3}\] thì tam giác MNP đồng dạng với tam giác ABC theo tỉ số nào?
A. \[\frac{2}{3}\];
B. \[\frac{3}{2}\];
C. \[\frac{9}{4}\];
D. \[\frac{4}{9}\].
Câu 2:
Cho tam giác ABC vuông tại A và đường cao AH.
Chứng mỉnh rằng AH2 = BH . CH.
Câu 3:
BC2 = BE . BH + CF . CH.
Câu 4:
Cho tam giác ABC vuông tại A và đường cao AH.
Chứng mình rằng AB2 = BH . BC.
Câu 5:
Cho tam giác ABC vuông tại A (AB < AC), M là điểm bất kì trên cạnh AC. Kẻ MD ⊥ BC (D ∈ BC).
Gọi E là giao điểm của đường thẳng AB với đường thẳng MD.
Chứng minh rằng DB . DC = DE . DM.
Câu 6:
Nếu tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k thì tỉ số của chu vi của hai tam giác đó bằng:
A. \[\frac{1}{k}\];
B. \[\frac{1}{{{k^2}}}\];
C. k ;
D. k2.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận