Câu hỏi:

13/07/2024 2,586 Lưu

Các quả bóng trong một bình có cùng kích thước và khối lượng, được đánh số lần lượt từ 1 cho đến hết. Bắc lấy ra ngẫu nhiên 1 quả bóng, xem số rồi trả lại bình. Bắc lặp lại thử nghiệm đó 200 lần thì thấy có 40 lần lấy được quả bóng ghi số có một chữ số. Hỏi trong bình có khoảng bao nhiêu quả bóng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi n là số quả bóng trong bình.

Xác suất thực nghiệm của biến cố “Lấy được quả bóng ghi số có một chữ số” là:

\(\frac{{40}}{{200}} = 0,2\).

Các trường hợp xảy ra của biến cố “Lấy được quả bóng ghi số có một chữ số” là quả bóng lấy ra chứa một trong các số 1; 2; 3; 4; 5; 6; 7; 8; 9.

Xác suất lý thuyết của biến cố “Lấy được quả bóng ghi số có một chữ số” là \(\frac{9}{n}\).

Vì số phép thử lớn nên xác suất thực nghiệm và xác suất lý thuyết của biến cố “Lấy được quả bóng ghi số có một chữ số” là gần bằng nhau nên ta có

\(\frac{9}{n} \approx 0,2\), tức là \(n \approx \frac{9}{{0,2}} = 45\).

Vậy trong bình có khoảng 45 quả bóng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xác suất thực nghiệm của biến cố “Lấy được tấm thẻ màu đỏ” là \(\frac{{40}}{{120}} = \frac{1}{3}\).

Gọi số tấm thẻ màu đỏ trong hộp là n. Tổng số thẻ trong hộp là n + 7.

Xác suất lý thuyết của biến cố “Lấy được tấm thẻ màu đỏ” là \(\frac{7}{{n + 7}}\).

Vì số phép thử lớn nên xác suất thực nghiệm và xác suất lý thuyết của biến cố “Lấy được tấm thẻ màu đỏ” là gần bằng nhau nên ta có:

\(\frac{7}{{n + 7}} \approx \frac{1}{3}\), tức là n + 7 ≈ 21 hay n ≈ 14.

Vậy có khoảng 14 tấm thẻ màu vàng trong hộp.

Lời giải

Xác suất thực nghiệm của biến cố A là \(\frac{{55}}{{120}} = \frac{{11}}{{24}}\).

Vì số người được lựa chọn tương đối lớn nên xác suất thực nghiệm của biến cố A xấp xỉ bằng xác suất lý thuyết của A.

Vậy xác suất lý thuyết của biến cố A xấp xỉ bằng \(\frac{{11}}{{24}}\).