Câu hỏi:

16/11/2023 345

Cho tam giác ABC cân tại A, AB = AC = m, BC = n. Đường phân giác góc B cắt AC tại I, đường phân giác góc C cắt AB tại H. Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho tam giác ABC cân tại A, AB = AC = m, BC = n. Đường phân giác góc B cắt AC tại I, đường phân giác góc C cắt AB tại H. Khẳng định nào sau đây là đúng? (ảnh 1)

Tam giác ABC có:

+ BI là đường phân giác của góc B.

Do đó ta có: AIIC=ABBC  hay AIIC=mn  (1).

+ CH là đường phân giác của góc C.

Do đó ta có: AHHB=ACBC  hay AHHB=mn (2).

Từ (1) và (2) suy ra AHHB=AIIC=mn .

Theo định lí Thalès đảo ta suy ra HI // BC.

Theo (2) ta có AHHB=mn  nên AH+HBHB=m + nn   hay ABHB=m + nn  .

Suy ra  HBAB=nm + n, khi đó, HAAB=ABHBAB=1HBAB=mm + n  .

Vì HI // BC nên ta có: AHAB=HIBC .

Suy ra HI=AHABBC=mm + nn=mnm + n .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho tam giác DEF có DI là đường phân giác của góc EDF (I ∈ EF). Biết DE = 5 cm, EF = 9 cm, DF = 8 cm. Tỉ số diện tích của hai tam giác DEI và DFI là: (ảnh 1)

Tam giác DEF có DI là đường phân giác của góc D.

Do đó ta có: DEDF=EIIF  hay EIIF=58  .

Tỉ số diện tích của tam giác DEI và DFI chính là tỉ số EIIF   (vì hai tam giác này có chung đường cao hạ từ D đến EF).

Vậy tỉ số diện tích của tam giác DEI và tam giác DFI là 58  .

Lời giải

Đáp án đúng là: B

Tam giác ABC có AD là đường phân giác của góc A.

Do đó ta có ABAC=BDDC  hay 67=xy

Suy ra x=67y .

Ta có BD + DC = BC hay x + y = 9.

Từ đó ta có 67y+y=9 , suy ra 137y=9  .

Vậy y=6313  và  x=5413.

Do đó yx=63135413=913 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP