Câu hỏi:

01/12/2023 679 Lưu

Một thanh xà gồ hình chữ nhật được cắt ra từ một khối gỗ hình trụ có đường kính 30 cm. Hãy tìm sự phụ thuộc giữa diện tích mặt cắt S của thanh xà gồ với góc θ, trong đó góc θ được chỉ ra ở hình dưới.

Một thanh xà gồ hình chữ nhật được cắt ra từ một khối gỗ hình trụ có đường kính 30 cm. Hãy tìm (ảnh 1)

A. S(θ) = 450sin2θ (cm2);

B. S(θ) = 900sin2θ (cm2);

C. S(θ) = 225sin2θ (cm2);

D. S(θ) = 1800sin2θ (cm2).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A

Một thanh xà gồ hình chữ nhật được cắt ra từ một khối gỗ hình trụ có đường kính 30 cm. Hãy tìm (ảnh 2)

Mặt cắt của thanh xà gồ là hình chữ nhật có hai kích thước là

AB = 30cos θ (cm) và AD = 30sin θ (cm).

Vậy diện tích mặt cắt là

S = AB ∙ AD = 30cosθ ∙ 30sinθ = 450 ∙ 2sinθ cosθ = 450sin2θ (cm2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Mực nước của con kênh cao nhất khi h đạt giá trị lớn nhất

cosπt8+π4=1πt8+π4=k2π  kt=16k2  k (1).

Mặt khác 0 ≤ t ≤ 24, kết hợp với (1) ta được: 18k138,k. Do đó k = 1.

Với k = 1 thì t = 14 (giờ).

Vậy mực nước của con kênh cao nhất khi t = 14 giờ.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A

Hai vị trí O và A là hai vị trí chân cầu, tại hai vị trí này thì y = 0.

Ta có y = 0 4,8sinx9=0sinx9=0x9=kπ (k ℤ).

Suy ra x = 9kπ, k ℤ.

Quan sát đồ thị ta thấy, đồ thị hàm số y=4,8sinx9 cắt trục hoành tại điểm O và A liên tiếp nhau với x ≥ 0.

Xét k = 0, ta có x1 = 0;

Xét k = 1, ta có x2 = 9π.

Mà x1 = 0 nên đây là hoành độ của O, do đó x2 = 9π là hoành độ của điểm A.

Khi đó OA = 9π ≈ 28,3.

Vậy chiều rộng của con sông xấp xỉ 28,3 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP