Câu hỏi:

13/07/2024 2,224

Cho biểu thức

P = \(\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - {x^3}}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{x^2} + 2x + 1}}\).

Tính giá trị của P khi \(x = \frac{1}{2}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Thay \(x = \frac{1}{2}\) vào P sau khi rút gọn ta có: \(P = \frac{{\frac{1}{2} + 1}}{{\frac{1}{2} - 1}} = \frac{{\frac{3}{2}}}{{ - \frac{1}{2}}} = - 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

P = \(\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - {x^3}}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{x^2} + 2x + 1}}\)

\( = \left[ {\frac{1}{{x - 1}} - \frac{x}{{\left( {1 - x} \right)\left( {{x^2} + x + 1} \right)}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right]:\frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\)

\( = \left[ {\frac{1}{{x - 1}} + \frac{{x\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\left( {x + 1} \right)}}} \right]:\frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\)

\( = \left[ {\frac{1}{{x - 1}} + \frac{x}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right]:\frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\)

\( = \left[ {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} + \frac{x}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right]:\frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\)

\( = \left[ {\frac{{x + 1 + x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right]:\frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\)

\( = \frac{{2x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}.\frac{{{{\left( {x + 1} \right)}^2}}}{{2x + 1}}\)\( = \frac{{x + 1}}{{x - 1}}\).

Lời giải

Điều kiện xác định của P là: \(\left\{ \begin{array}{l}x - 1 \ne 0\\1 - {x^3} \ne 0\\x + 1 \ne 0\\{x^2} + 2x + 1 = {\left( {x + 1} \right)^2} \ne 0\end{array} \right.hay\,\,\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay