Câu hỏi:
13/07/2024 2,266
Cho biểu thức
P = \(\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - {x^3}}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{x^2} + 2x + 1}}\).
Tính giá trị của P khi \(x = \frac{1}{2}\).
Cho biểu thức
P = \(\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - {x^3}}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{x^2} + 2x + 1}}\).
Tính giá trị của P khi \(x = \frac{1}{2}\).
Quảng cáo
Trả lời:
Thay \(x = \frac{1}{2}\) vào P sau khi rút gọn ta có: \(P = \frac{{\frac{1}{2} + 1}}{{\frac{1}{2} - 1}} = \frac{{\frac{3}{2}}}{{ - \frac{1}{2}}} = - 3\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
P = \(\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - {x^3}}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{x^2} + 2x + 1}}\)
\( = \left[ {\frac{1}{{x - 1}} - \frac{x}{{\left( {1 - x} \right)\left( {{x^2} + x + 1} \right)}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right]:\frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\)
\( = \left[ {\frac{1}{{x - 1}} + \frac{{x\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\left( {x + 1} \right)}}} \right]:\frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\)
\( = \left[ {\frac{1}{{x - 1}} + \frac{x}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right]:\frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\)
\( = \left[ {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} + \frac{x}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right]:\frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\)
\( = \left[ {\frac{{x + 1 + x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right]:\frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\)
\( = \frac{{2x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}.\frac{{{{\left( {x + 1} \right)}^2}}}{{2x + 1}}\)\( = \frac{{x + 1}}{{x - 1}}\).
Lời giải
Điều kiện xác định của P là: \(\left\{ \begin{array}{l}x - 1 \ne 0\\1 - {x^3} \ne 0\\x + 1 \ne 0\\{x^2} + 2x + 1 = {\left( {x + 1} \right)^2} \ne 0\end{array} \right.hay\,\,\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.