Câu hỏi:
13/07/2024 397Cho a, b là các số nguyên dương và q = \(\frac{{{a^2} + {b^2}}}{{ab + 1}}\) là số nguyên. Chứng minh rằng q là số chính phương.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giả sử q không phải là số chính phương
Xét tập S(q) = \(\left\{ {\left. {\left( {a;b} \right) \subset {{\left( {{\mathbb{N}^*}} \right)}^2}} \right|q = \frac{{{a^2} + {b^2}}}{{ab + 1}}} \right\}\). Theo giả thiết S(q) ≠ ∅ nên theo nguyên lý cực hạn tồn tại cặp số (A; B) thuộc S(q) sao cho A + B nhỏ nhất.
Giả sử A ≥ B.
Xét phương trình q = \(\frac{{{x^2} + {B^2}}}{{Bx + 1}} \Leftrightarrow {x^2} - Bqx + {B^2} - q = 0\)
Rõ ràng A là một nghiệm của phương trình. Giả sử nghiệm còn lại là a.
Theo định lý Vi–ét ta có:
\(\left\{ \begin{array}{l}A + a = Bq\\Aa = {B^2} - q\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = Bq - A\left( 3 \right)\\a = \frac{{{B^2} - q}}{A}\left( 4 \right)\end{array} \right.\)
Đến đây ta có thể đi đến kết luận A ≤ a.
Theo phương trình trên thì A2 ≤ Aa = B2 + 6 ⇔ (A – B)(A + B) ≤ 6.
Từ đó suy ra (A – B)(A + B) ∈ {0;1;2;3;4;5;6} với A ≥ B.
Từ đây kiểm tra được chỉ có cặp A = B = 1 thỏa mãn p là số nguyên dương
Khi đó: p = 8 là số lập phương
Như vậy với mọi số nguyên dương thỏa mãn điều kiện bài toán thì p = 8 (A = B = 1 chỉ là các số nhỏ nhất thỏa mãn tính chất này)
Vậy giả sử ban đầu là sai.
Vậy p là số chính phương.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tanα = 2. Tính \(\tan \left( {\alpha - \frac{\pi }{4}} \right)\).
Câu 2:
Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?
Câu 3:
1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?
Câu 4:
Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?
Câu 5:
Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\) và \(\widehat {ACE}\).
Câu 7:
Cho tam giác ABC có \(\widehat A = 150^\circ \). Diện tích tam giác ABC là:
A. \(\frac{1}{4}ab\)
B. \(\frac{1}{2}bc\)
C. \( - \frac{1}{2}ab\)
D. \(\frac{1}{4}bc\)
về câu hỏi!