Câu hỏi:

13/07/2024 661

Cho a, b là các số nguyên dương và q = \(\frac{{{a^2} + {b^2}}}{{ab + 1}}\) là số nguyên. Chứng minh rằng q là số chính phương.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử q không phải là số chính phương

Xét tập S(q) = \(\left\{ {\left. {\left( {a;b} \right) \subset {{\left( {{\mathbb{N}^*}} \right)}^2}} \right|q = \frac{{{a^2} + {b^2}}}{{ab + 1}}} \right\}\). Theo giả thiết S(q) ≠ nên theo nguyên lý cực hạn tồn tại cặp số (A; B) thuộc S(q) sao cho A + B nhỏ nhất.

Giả sử A ≥ B.

Xét phương trình q = \(\frac{{{x^2} + {B^2}}}{{Bx + 1}} \Leftrightarrow {x^2} - Bqx + {B^2} - q = 0\)

Rõ ràng A là một nghiệm của phương trình. Giả sử nghiệm còn lại là a.

Theo định lý Vi–ét ta có:

\(\left\{ \begin{array}{l}A + a = Bq\\Aa = {B^2} - q\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = Bq - A\left( 3 \right)\\a = \frac{{{B^2} - q}}{A}\left( 4 \right)\end{array} \right.\)

Đến đây ta có thể đi đến kết luận A ≤ a.

Theo phương trình trên thì A2 ≤ Aa = B2 + 6 (A – B)(A + B) ≤ 6.

Từ đó suy ra (A – B)(A + B) {0;1;2;3;4;5;6} với A ≥ B.

Từ đây kiểm tra được chỉ có cặp A = B = 1 thỏa mãn p là số nguyên dương

Khi đó: p = 8 là số lập phương

Như vậy với mọi số nguyên dương thỏa mãn điều kiện bài toán thì p = 8 (A = B = 1 chỉ là các số nhỏ nhất thỏa mãn tính chất này)

Vậy giả sử ban đầu là sai.

Vậy p là số chính phương.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tanα = 2. Tính \(\tan \left( {\alpha - \frac{\pi }{4}} \right)\).

Xem đáp án » 13/07/2024 31,695

Câu 2:

Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?

Xem đáp án » 13/07/2024 25,923

Câu 3:

1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?

Xem đáp án » 13/07/2024 12,934

Câu 4:

Cho tam giác ABC nhọn nội tiếp (O). Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK. Gọi M và N lần lượt là trung điểm của BC và AC. Chứng minh: MN DF và M là tâm đường tròn ngoại tiếp tam giác DEF.

Xem đáp án » 13/07/2024 12,800

Câu 5:

Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

Xem đáp án » 13/07/2024 8,610

Câu 6:

Khai triển hằng đẳng thức a4 + b4

Xem đáp án » 13/07/2024 7,857

Câu 7:

Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\)\(\widehat {ACE}\).

Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\) và \(\widehat {ACE}\).ho hình trên biết AB // CD, CD // EF. Tính góc ACD và góc ACE (ảnh 1)

Xem đáp án » 13/07/2024 5,682