Câu hỏi:
29/01/2024 564Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì, trên tia đối của tia CD lấy điểm F sao cho CE = CF.
a) Chứng minh DE = BF.
b) Tia DE cắt BF tại H. Chứng minh \(\widehat {DHF} = 90^\circ \).
c) Gọi I là trung điểm của EF, K là giao điểm của FE và BD. Chứng minh tứ giác AOIK là hình bình hành.
d) Chứng minh A, H, K thẳng hàng.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Vì ABCD là hình vuông nên AB = BC = CD = DA và
\[\widehat {ABC} = \widehat {BCD} = \widehat {CDA} = \widehat {DAB} = 90^\circ \]
Xét △DEC và △BFC có
EC = FC (giả thiết)
\[\widehat {DCE} = \widehat {BCF} = 90^\circ \]
DC = BC (chứng minh trên)
Do đó △DEC = △BFC (c.g.c)
Suy ra DE = BF (2 cạnh tương ứng), \[\widehat {EDC} = \widehat {FBC}\]
b) Xét △BEH và △DEC có
\[\widehat {BEH} = \widehat {DEC}\] (hai góc đối đỉnh)
\[\widehat {EDC} = \widehat {FBC}\] (chứng minh câu a)
Suy ra △BEH ∽ △DEC (g.g)
Do đó \[\widehat {BHE} = \widehat {DCE}\]
Mà \[\widehat {DCE} = 90^\circ \]nên \[\widehat {BHE} = 90^\circ \]
Hay DE ⊥ BF
Suy ra \[\widehat {DHF} = 90^\circ \]
c) Xét tam giác BDF có
DE ⊥ BF
BC ⊥ DF
DE cắt BC tại E
Suy ra E là trực tâm tam giác BDF
Do đó FK ⊥ BD
Mà AO ⊥ BD
Suy ra AO // IK
Vì CE = CF nên tam giác CEF cân tại C
Mà CI là trung tuyến
Suy ra CI là đường cao
Hay CI ⊥ EF
Xét tứ giác OKIC có \[\widehat {OKI} = \widehat {KOC} = \widehat {CIK} = 90^\circ \]
Suy ra OKIC là hình chữ nhật
Do đó OC = KI
Mà OC = AO
Suy ra AO = KI
Xét tứ giác AOIK có AO // KI, AO = KI (chứng minh trên)
Suy ra AOIK là hình bình hành
d) Xét tứ giác ABHD có \[\widehat {BAD} + \widehat {BHD} = 90^\circ + 90^\circ = 180^\circ \]
Suy ra tứ giác ABHD nội tiếp
Do đó \[\widehat {AHB} = \widehat {ADB} = 45^\circ \]
Xét tứ giác DKHF có \[\widehat {DKF} = \widehat {DHF} = 90^\circ \]
Suy ra tứ giác DKHF nội tiếp
Do đó \[\widehat {KHB} = \widehat {FDB} = 45^\circ \]
Suy ra \[\widehat {AHB} = \widehat {KHB}\]
Suy ra AH ≡ KH
Do đó A, H, K thẳng hàng.
Vậy A, H, K thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tanα = 2. Tính \(\tan \left( {\alpha - \frac{\pi }{4}} \right)\).
Câu 2:
Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?
Câu 3:
1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?
Câu 4:
Cho tam giác ABC nhọn nội tiếp (O). Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK. Gọi M và N lần lượt là trung điểm của BC và AC. Chứng minh: MN ⊥ DF và M là tâm đường tròn ngoại tiếp tam giác DEF.
Câu 5:
Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?
Câu 7:
Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\) và \(\widehat {ACE}\).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận