Câu hỏi:

29/01/2024 624

Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì, trên tia đối của tia CD lấy điểm F sao cho CE = CF.

a) Chứng minh DE = BF.

b) Tia DE cắt BF tại H. Chứng minh \(\widehat {DHF} = 90^\circ \).

c) Gọi I là trung điểm của EF, K là giao điểm của FE và BD. Chứng minh tứ giác AOIK là hình bình hành.

d) Chứng minh A, H, K thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì (ảnh 1)

a) Vì ABCD là hình vuông nên AB = BC = CD = DA và

\[\widehat {ABC} = \widehat {BCD} = \widehat {CDA} = \widehat {DAB} = 90^\circ \]

Xét DEC và BFC có

EC = FC (giả thiết)

\[\widehat {DCE} = \widehat {BCF} = 90^\circ \]

DC = BC (chứng minh trên)

Do đó DEC = BFC (c.g.c)

Suy ra DE = BF (2 cạnh tương ứng), \[\widehat {EDC} = \widehat {FBC}\]

b) Xét BEH và DEC có

\[\widehat {BEH} = \widehat {DEC}\] (hai góc đối đỉnh)

\[\widehat {EDC} = \widehat {FBC}\] (chứng minh câu a)

Suy ra BEH  DEC  (g.g)

Do đó \[\widehat {BHE} = \widehat {DCE}\]

Mà \[\widehat {DCE} = 90^\circ \]nên \[\widehat {BHE} = 90^\circ \]

Hay DE  BF

Suy ra \[\widehat {DHF} = 90^\circ \]

c) Xét tam giác BDF có

DE  BF

BC  DF

DE cắt BC tại E

Suy ra E là trực tâm tam giác BDF

Do đó FK  BD

Mà AO  BD

Suy ra AO // IK

Vì CE = CF nên tam giác CEF cân tại C

Mà CI là trung tuyến

Suy ra CI là đường cao

Hay CI  EF

Xét tứ giác OKIC có \[\widehat {OKI} = \widehat {KOC} = \widehat {CIK} = 90^\circ \]

Suy ra OKIC là hình chữ nhật

Do đó OC = KI

Mà OC = AO

Suy ra AO = KI

Xét tứ giác AOIK có AO // KI, AO = KI (chứng minh trên)

Suy ra AOIK là hình bình hành

d) Xét tứ giác ABHD có \[\widehat {BAD} + \widehat {BHD} = 90^\circ + 90^\circ = 180^\circ \]

Suy ra tứ giác ABHD nội tiếp

Do đó \[\widehat {AHB} = \widehat {ADB} = 45^\circ \]

Xét tứ giác DKHF có \[\widehat {DKF} = \widehat {DHF} = 90^\circ \]

Suy ra tứ giác DKHF nội tiếp

Do đó \[\widehat {KHB} = \widehat {FDB} = 45^\circ \]

Suy ra \[\widehat {AHB} = \widehat {KHB}\]

Suy ra AH ≡ KH

Do đó A, H, K thẳng hàng.

Vậy A, H, K thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).

Lời giải

Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)

Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng

Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút

Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP