Câu hỏi:

29/01/2024 217

Cho tam giác ABC có BC = 6, AB = 5, \(\overrightarrow {BC} .\overrightarrow {BA} = 24\). Tính diện tích tam giác ABC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có BC = 6, AB = 5, vecto BC . vecto BA = 24 (ảnh 1)

Áp dụng định lí cosin ta có:

\(AC = \sqrt {B{A^2} + B{C^2} - 2.BA.BC.\cos \widehat B} \)

\(AC = \sqrt {B{A^2} + B{C^2} - 2.\left( {\overrightarrow {BC} .\overrightarrow {BA} } \right)} \)

\(AC = \sqrt {{5^2} + {6^2} - 2.24} = \sqrt {13} \)

Chu vi của tam giác BAC là: AB + AC + BC = 11 + \(\sqrt {13} \)

Áp dụng công thức herong: SABC = \(\sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} \) trong đó p = \(\frac{{11 + \sqrt {13} }}{2}\)

SABC = \(\sqrt {\left( {\frac{{11 + \sqrt {13} }}{2} - 5} \right)\left( {\frac{{11 + \sqrt {13} }}{2} - 6} \right)\left( {\frac{{11 + \sqrt {13} }}{2} - \sqrt {13} } \right)} \)

\( = \sqrt {\left( {\frac{{1 + \sqrt {13} }}{2}} \right)\left( {\frac{{ - 1 + \sqrt {13} }}{2}} \right)\left( {\frac{{11 - \sqrt {13} }}{2}} \right)} \)

\( = \sqrt {\frac{{\left( {13 - 1} \right)}}{4}.\left( {\frac{{11 - \sqrt {13} }}{2}} \right)} \)

\( = \sqrt {3.\left( {\frac{{11 - \sqrt {13} }}{2}} \right)} = \sqrt {\frac{{33 - 3\sqrt {13} }}{2}} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).

Lời giải

Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)

Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng

Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút

Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP