Câu hỏi:

29/01/2024 839

Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh

abc(1 + a2)(1 + b2)(1 + c2) ≤ 8.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

abc(1 + a2)(1 + b2)(1 + c2) ≤ 8

a(1 + a2).b(1 + b2).c(1 + c2) ≤ 8

Ta có: 2a(1 + a2) ≤ \(\frac{{{{\left[ {2a + \left( {1 + {a^2}} \right)} \right]}^2}}}{4} = \frac{{{{\left( {a + 1} \right)}^4}}}{4}\) a(1 + a2) ≤ \(\frac{{{{\left( {a + 1} \right)}^4}}}{8}\)

2b(1 + b2) ≤ \(\frac{{{{\left[ {2b + \left( {1 + {b^2}} \right)} \right]}^2}}}{4} = \frac{{{{\left( {b + 1} \right)}^4}}}{4}\) b(1 + b2) ≤ \(\frac{{{{\left( {b + 1} \right)}^4}}}{8}\)

2c(1 + c2) ≤ \(\frac{{{{\left[ {2c + \left( {1 + {c^2}} \right)} \right]}^2}}}{4} = \frac{{{{\left( {c + 1} \right)}^4}}}{4}\) c(1 + c2) ≤ \(\frac{{{{\left( {c + 1} \right)}^4}}}{8}\)

Suy ra: a(1 + a2).b(1 + b2).c(1 + c2) ≤ \(\frac{{{{\left( {a + 1} \right)}^4}}}{8}.\frac{{{{\left( {b + 1} \right)}^4}}}{8}.\frac{{{{\left( {c + 1} \right)}^4}}}{8}\)

Mà (a + 1)(b + 1)(c + 1) \(\frac{{{{\left( {a + 1 + b + 1 + c + 1} \right)}^3}}}{{27}} = \frac{{{{\left( {a + b + c + 3} \right)}^3}}}{{27}} = 8\)

Suy ra: a(1 + a2).b(1 + b2).c(1 + c2) ≤ \(\frac{{{8^4}}}{{8.8.8}} = 8\)

Dấu “=” xảy ra khi: \(\left\{ \begin{array}{l}{\left( {a - 1} \right)^2} = 0\\a = b = c\\a + b + c = 3\end{array} \right. \Leftrightarrow a = b = c = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tanα = 2. Tính \(\tan \left( {\alpha - \frac{\pi }{4}} \right)\).

Xem đáp án » 13/07/2024 31,511

Câu 2:

Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?

Xem đáp án » 13/07/2024 25,567

Câu 3:

1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?

Xem đáp án » 13/07/2024 12,836

Câu 4:

Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

Xem đáp án » 13/07/2024 7,988

Câu 5:

Khai triển hằng đẳng thức a4 + b4

Xem đáp án » 13/07/2024 6,640

Câu 6:

Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\)\(\widehat {ACE}\).

Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\) và \(\widehat {ACE}\).ho hình trên biết AB // CD, CD // EF. Tính góc ACD và góc ACE (ảnh 1)

Xem đáp án » 13/07/2024 5,613

Câu 7:

Cho tam giác ABC nhọn nội tiếp (O). Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK. Gọi M và N lần lượt là trung điểm của BC và AC. Chứng minh: MN DF và M là tâm đường tròn ngoại tiếp tam giác DEF.

Xem đáp án » 13/07/2024 4,918

Bình luận


Bình luận