Câu hỏi:

29/01/2024 1,793 Lưu

Cho tam giác ABC. Chứng minh rằng sinA + sinB + sinC ≤ \(\frac{{3\sqrt 3 }}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử tam giác ABC có đường tròn nội tiếp (O; R)

Ta đi chứng minh AB + AC + CA ≤ \(3\sqrt 3 R\)

Ta có: \({\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)^2} \ge 0\)

OA2 + OB2 + OC2 + \(2\left( {\overrightarrow {OA} .\overrightarrow {OB} + \overrightarrow {OB} .\overrightarrow {OC} + \overrightarrow {OC} .\overrightarrow {OA} } \right) \ge 0\)

3R2 \( \ge - 2\left( {\overrightarrow {OA} .\overrightarrow {OB} + \overrightarrow {OB} .\overrightarrow {OC} + \overrightarrow {OC} .\overrightarrow {OA} } \right)\)

9R2 \( \ge 6{R^2} - 2\left( {\overrightarrow {OA} .\overrightarrow {OB} + \overrightarrow {OB} .\overrightarrow {OC} + \overrightarrow {OC} .\overrightarrow {OA} } \right)\)

\(9{R^2} \ge \left( {O{A^2} - 2\overrightarrow {OA} .\overrightarrow {OB} + O{B^2}} \right) + \left( {O{B^2} - 2\overrightarrow {OC} .\overrightarrow {OB} + O{C^2}} \right) + \left( {O{C^2} - 2\overrightarrow {OA} .\overrightarrow {OC} + O{A^2}} \right)\)

\[9{R^2} \ge {\left( {\overrightarrow {OA} - \overrightarrow {OB} } \right)^2} + {\left( {\overrightarrow {OB} - \overrightarrow {OC} } \right)^2} + {\left( {\overrightarrow {OC} - \overrightarrow {OA} } \right)^2}\]

\[9{R^2} \ge {\left( {\overrightarrow {BA} } \right)^2} + {\left( {\overrightarrow {CB} } \right)^2} + {\left( {\overrightarrow {AC} } \right)^2}\]

9R2 ≥ AB2 + AC2 + BC2

9R2 ≥ AB2 + AC2 + BC2 \(\frac{{{{\left( {AB + BC + CA} \right)}^2}}}{{{1^2} + {1^2} + {1^2}}}\)(Bunhiacopxki)

9R2\(\frac{{{{\left( {AB + BC + CA} \right)}^2}}}{3}\)

27R2 ≥ (AB + BC + CA)2

AB + AC + CA ≤ \(3\sqrt 3 R\)

\(\frac{{AB}}{{2R}} + \frac{{BC}}{{2R}} + \frac{{CA}}{{2R}} \le \frac{{3\sqrt 3 R}}{{2R}}\)

Hay sinC + sinA + sinB ≤ \(\frac{{3\sqrt 3 }}{2}\)(dpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)

Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng

Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút

Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.

Lời giải

\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP