Câu hỏi:

13/07/2024 708

Tam giác ABC nội tiếp (O), AD là đường kính của (O). M là trung điểm của của BC, H là trực tâm của tam giác ABC. Gọi X, Y, Z lần lượt là hình chiếu vuông góc của D lên HB, HC, BC. Chứng minh rằng 4 điểm X, Y, Z, M cùng thuộc 1 đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Tam giác ABC nội tiếp (O), AD là đường kính của (O). M là trung điểm  (ảnh 1)

Giả sử HB cắt DY tại I, HC cắt DX tại K, J là trung điểm IK

Xét tam giác ADC có \(\widehat {ACD} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)

Nên AC CD

Mà BH AC. Nên BH // CD

Tương tự: \(\widehat {ABD} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)

Nên AB BD

Mà CH AB nên CH // BD

Xét tứ giác BHCD có: BH // CD và CH // BD nên BHCD là hình bình hành.

HD, BC cắt nhau tại trung điểm M của mỗi đường

Vì DX HI, DI HC suy ra K là trực tâm của tam giác IHD

Nên: \[\widehat {KDI} = \widehat {KHI} = \widehat {HCD}\](HI //CD)

\(\widehat {CHD} = \widehat {KID}\)(cùng phụ với \(\widehat {HDI}\))

Xét tam giác KID và tam giác CHD có:

\(\widehat {KID} = \widehat {CHD}\)

\[\widehat {KDI} = \widehat {HCD}\]

∆KID ∆CHD (g.g)

Mặt khác CM, DJ là hai trung tuyến tương ứng của tam giác CHD và KID

Như vậy ta có: ∆DIJ ∆CHM

\[\widehat {JDI} = \widehat {HCM}\]

Từ đó suy ra: DJ vuông góc với BC tại Z hay Z thuộc đường tròn đường kính MJ.

Lại có: M là trung điểm HD (chứng minh trên)

X, Y, Z lần lượt là hình chiếu vuông góc của D lên HB, HC, BC

Kết hợp tính chất điểm M thì đường tròn đường kính MJ là đường trò Ơ–le của tam giác HID.

Suy ra: X, Y, Z, M cùng thuộc 1 đường tròn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).

Lời giải

Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)

Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng

Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút

Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP