Câu hỏi:
13/07/2024 848
Cho phương trình x2 + 2(m – 2)x + m2 – 4m = 0.
a) Giải phương trình khi m = 1.
b) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.
Cho phương trình x2 + 2(m – 2)x + m2 – 4m = 0.
a) Giải phương trình khi m = 1.
b) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.
Quảng cáo
Trả lời:
a) Khi m = 1, ta có: x2 – 2x – 3 = 0
⇔ \(\left[ \begin{array}{l}x = 3\\x = - 1\end{array} \right.\)
Vậy khi m = 1 thì x = 3 hoặc x = –1.
b) x2 + 2(m – 2)x + m2 – 4m = 0
∆' = (m – 2)2 – m2 + 4m = m2 – 4m + 4 – m2 + 4m = 4 > 0, ∀m
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).
Lời giải
Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)
Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng
Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút
Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.