Câu hỏi:

13/07/2024 1,131 Lưu

Cho tam giác ABD có AB = 15cm, AD = 20cm, BD = 25cm. Vẽ AM vuông góc BD.

a) Chứng minh: tam giác ABD vuông. Tính AM, BM, MD.

b) Kẻ tia Bx // AD, vẽ AM vuông góc BD cắt Bx tại C. Chứng minh: AB2 = AD.BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABD có AB = 15cm, AD = 20cm, BD = 25cm (ảnh 1)

a) Ta thấy: 252 = 202 + 152 hay AB2 + AD2 = BD2

Theo định lí Pytago đảo, suy ra tam giác ABD vuông tại A

Áp dụng hệ thức lượng trong tam giác ABD vuông ta có:

AB.AD = AM.BD AM = \(\frac{{AB.AD}}{{BD}} = \frac{{15.20}}{{25}} = 12cm\)

AD2 = MD.BD DM = \(\frac{{A{D^2}}}{{BD}} = \frac{{{{20}^2}}}{{25}} = 16cm\)

BM = BD – DM = 25 – 16 = 9(cm)

b) Vì AB AD do ABD vuông tại A

Và Bx // AD

Nên Bx AB tại B. Suy ra: \(\widehat {ABC} = 90^\circ \)

Xét tam giác BAM và tam giác BDA có:

Chung \(\widehat B\)

\(\widehat {BMA} = \widehat {BAD} = 90^\circ \)

∆BMA ∆BAD (g.g)

Suy ra: \(\widehat {BAM} = \widehat {BDA}\) hay \(\widehat {BAC} = \widehat {BDA}\)

Xét tam giác BAC và tam giác BAD có:

\(\widehat {BAC} = \widehat {BDA}\)(chứng minh trên)

\(\widehat {ABC} = \widehat {BAD} = 90^\circ \)

∆BAC ∆ADB (g.g)

\(\frac{{AB}}{{AD}} = \frac{{AC}}{{AB}}\) AB2 = AD.AC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).

Lời giải

Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)

Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng

Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút

Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP