Câu hỏi:
13/07/2024 562Cho tam giác ABC có đường cao AH. Trên AH, lấy các điểm K, I sao cho AK = KI = IH. Qua I, K lần lượt vẽ các đường thẳng EF//BC, MN//BC (E, M thuộc AB, F, N thuộc AC).
a) Tính \(\frac{{MN}}{{BC}};\frac{{EF}}{{BC}}\).
b) Cho biết diện tích của tam giác ABC là 90cm2. Tính diện tích tứ giác MNFE.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Theo giả thiết: MN // BC nên \(\frac{{MN}}{{BC}} = \frac{{AM}}{{AB}} = \frac{{AK}}{{AH}}\)
Mà \(AK = \frac{1}{3} \Rightarrow \frac{{MN}}{{BC}} = \frac{1}{3}\)
Lại có: EF // BC nên \(\frac{{EF}}{{BC}} = \frac{{AE}}{{AB}} = \frac{{AI}}{{AH}} = \frac{2}{3}\)
b) Ta có: SABC = \(\frac{1}{2}.AH.BC\)
SAMN = \(\frac{1}{2}.AK.MN = \frac{1}{2}.\frac{1}{3}AH.\frac{1}{3}BC = \frac{1}{9}{S_{ABC}}\)
SAEF = \(\frac{1}{2}AI.EF = \frac{1}{2}.\frac{2}{3}.AH.\frac{2}{3}BE = \frac{4}{9}{S_{ABC}}\)
SMNFE = SAFE – SAMN = \(\frac{4}{9}{S_{ABC}} - \frac{1}{9}{S_{ABC}} = \frac{1}{3}{S_{ABC}} = \frac{1}{3}.90 = 30\left( {c{m^2}} \right)\)
Vậy SMNFE = 30cm2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tanα = 2. Tính \(\tan \left( {\alpha - \frac{\pi }{4}} \right)\).
Câu 2:
Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?
Câu 3:
1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?
Câu 4:
Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?
Câu 5:
Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\) và \(\widehat {ACE}\).
Câu 7:
Cho tam giác ABC có \(\widehat A = 150^\circ \). Diện tích tam giác ABC là:
A. \(\frac{1}{4}ab\)
B. \(\frac{1}{2}bc\)
C. \( - \frac{1}{2}ab\)
D. \(\frac{1}{4}bc\)
về câu hỏi!