Câu hỏi:

29/01/2024 1,058

Chứng minh rằng tam giác ABC vuông khi \(\frac{b}{{\cos B}} + \frac{c}{{\cos C}} = \frac{a}{{\sin B.\sin C}}\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\frac{b}{{\cos B}} + \frac{c}{{\cos C}} = \frac{a}{{\sin B.\sin C}}\)

\(\frac{b}{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}} + \frac{c}{{\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}} = \frac{{abc}}{{\sin B.\sin C.bc}}\)

\(\frac{{2abc}}{{{a^2} + {c^2} - {b^2}}} + \frac{{2abc}}{{{a^2} + {b^2} - {c^2}}} = \frac{a}{{bc}}.\frac{b}{{\sin B}}.\frac{c}{{\sin C}}\)

\[\frac{{2abc}}{{{a^2} + {c^2} - {b^2}}} + \frac{{2abc}}{{{a^2} + {b^2} - {c^2}}} = \frac{{4a{R^2}}}{{bc}}\]

\[\frac{{4{a^3}bc}}{{\left( {{a^2} + {c^2} - {b^2}} \right)\left( {{a^2} + {b^2} - {c^2}} \right)}} = \frac{{4a{R^2}}}{{bc}}\]

\[\frac{{{a^2}bc}}{{\left( {{a^2} + {c^2} - {b^2}} \right)\left( {{a^2} + {b^2} - {c^2}} \right)}} = \frac{{{R^2}}}{{bc}}\]

R2(a2 + c2 – b2)(a2 + b2 – c2) = (abc)2

\(\frac{{\left( {{a^2} + {c^2} - {b^2}} \right).R}}{{abc}}.\frac{{\left( {{a^2} + {b^2} - {c^2}} \right).R}}{{abc}} = 1\)

\(\frac{{\left( {{a^2} + {c^2} - {b^2}} \right)}}{{2ac}}.\frac{{2R}}{b}.\frac{{\left( {{a^2} + {b^2} - {c^2}} \right)}}{{2ab}}.\frac{{2R}}{c} = 1\)

\(\frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)

Suy ra: \(\frac{{\left( {{a^2} + {c^2} - {b^2}} \right)}}{{2ac}}.\frac{{2R}}{b}.\frac{{\left( {{a^2} + {b^2} - {c^2}} \right)}}{{2ab}}.\frac{{2R}}{c} = 1\)

\(\frac{{\cos B}}{{\sin B}}.\frac{{\cos C}}{{\sin C}} = 1\)

cotB.cotC = 1

cotB = \(\frac{1}{{\cot C}} = \tan C\)

Suy ra: tam giác ABC vuông vì khi góc \[\widehat B,\widehat C\]phụ nhau thì tan góc này bằng cotan góc kia.

Vậy tam giác ABC vuông khi \(\frac{b}{{\cos B}} + \frac{c}{{\cos C}} = \frac{a}{{\sin B.\sin C}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tanα = 2. Tính \(\tan \left( {\alpha - \frac{\pi }{4}} \right)\).

Xem đáp án » 13/07/2024 31,410

Câu 2:

Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?

Xem đáp án » 13/07/2024 25,203

Câu 3:

1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?

Xem đáp án » 13/07/2024 12,747

Câu 4:

Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

Xem đáp án » 13/07/2024 7,798

Câu 5:

Khai triển hằng đẳng thức a4 + b4

Xem đáp án » 13/07/2024 6,030

Câu 6:

Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\)\(\widehat {ACE}\).

Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\) và \(\widehat {ACE}\).ho hình trên biết AB // CD, CD // EF. Tính góc ACD và góc ACE (ảnh 1)

Xem đáp án » 13/07/2024 5,580

Câu 7:

Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH. Gọi AD là phân giác của HAB.

a) Tính cạnh AH, AC biết HB = 18cm, HC = 8cm.

b) Chứng minh tam giác ADC cân và HD.BC = BD.DC.

c) Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Chứng minh

SAEF = SABC.(1 – cos2B).sin2C.

Xem đáp án » 13/07/2024 3,710

Bình luận


Bình luận