Chứng minh rằng tam giác ABC vuông khi \(\frac{b}{{\cos B}} + \frac{c}{{\cos C}} = \frac{a}{{\sin B.\sin C}}\).
Chứng minh rằng tam giác ABC vuông khi \(\frac{b}{{\cos B}} + \frac{c}{{\cos C}} = \frac{a}{{\sin B.\sin C}}\).
Quảng cáo
Trả lời:

\(\frac{b}{{\cos B}} + \frac{c}{{\cos C}} = \frac{a}{{\sin B.\sin C}}\)
⇔ \(\frac{b}{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}} + \frac{c}{{\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}} = \frac{{abc}}{{\sin B.\sin C.bc}}\)
⇔ \(\frac{{2abc}}{{{a^2} + {c^2} - {b^2}}} + \frac{{2abc}}{{{a^2} + {b^2} - {c^2}}} = \frac{a}{{bc}}.\frac{b}{{\sin B}}.\frac{c}{{\sin C}}\)
⇔ \[\frac{{2abc}}{{{a^2} + {c^2} - {b^2}}} + \frac{{2abc}}{{{a^2} + {b^2} - {c^2}}} = \frac{{4a{R^2}}}{{bc}}\]
⇔ \[\frac{{4{a^3}bc}}{{\left( {{a^2} + {c^2} - {b^2}} \right)\left( {{a^2} + {b^2} - {c^2}} \right)}} = \frac{{4a{R^2}}}{{bc}}\]
⇔ \[\frac{{{a^2}bc}}{{\left( {{a^2} + {c^2} - {b^2}} \right)\left( {{a^2} + {b^2} - {c^2}} \right)}} = \frac{{{R^2}}}{{bc}}\]
⇔ R2(a2 + c2 – b2)(a2 + b2 – c2) = (abc)2
⇔ \(\frac{{\left( {{a^2} + {c^2} - {b^2}} \right).R}}{{abc}}.\frac{{\left( {{a^2} + {b^2} - {c^2}} \right).R}}{{abc}} = 1\)
⇔\(\frac{{\left( {{a^2} + {c^2} - {b^2}} \right)}}{{2ac}}.\frac{{2R}}{b}.\frac{{\left( {{a^2} + {b^2} - {c^2}} \right)}}{{2ab}}.\frac{{2R}}{c} = 1\)
Mà \(\frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)
Suy ra: \(\frac{{\left( {{a^2} + {c^2} - {b^2}} \right)}}{{2ac}}.\frac{{2R}}{b}.\frac{{\left( {{a^2} + {b^2} - {c^2}} \right)}}{{2ab}}.\frac{{2R}}{c} = 1\)
⇔ \(\frac{{\cos B}}{{\sin B}}.\frac{{\cos C}}{{\sin C}} = 1\)
⇔ cotB.cotC = 1
⇔ cotB = \(\frac{1}{{\cot C}} = \tan C\)
Suy ra: tam giác ABC vuông vì khi góc \[\widehat B,\widehat C\]phụ nhau thì tan góc này bằng cotan góc kia.
Vậy tam giác ABC vuông khi \(\frac{b}{{\cos B}} + \frac{c}{{\cos C}} = \frac{a}{{\sin B.\sin C}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)
Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng
Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút
Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.
Lời giải
\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.