Câu hỏi:

13/07/2024 1,095

Cho đường tròn (O, 13cm) và dây AB = 24cm. Trên các tia OA, OB lần lượt lấy M, N sao cho OM = ON = 33,8cm. Chứng minh MN là tiếp tuyến của (O).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O, 13cm) và dây AB = 24cm. Trên các tia OA (ảnh 1)

Gọi K là giao điểm OH và MN; Gọi H là giao của OK và AB

Ta có: OA = OB nên OAB cân tại O H là trung điểm của AB.

Có OM = ON; OA = OB = R

Nên: \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}}\). Suy ra: AB // MN (định lý Thales đảo)

HA = HB = 12cm

Xét ΔOKN có BH // KN

Nên: \(\frac{{BH}}{{KN}} = \frac{{OB}}{{ON}}\)

KN = 31,2cm

OK = \(\sqrt {33,{8^2} - 31,{2^2}} = 13\left( {cm} \right)\) = R

Suy ra: K thuộc (O)

Ta có: OK MN và OK là bán kính của (O)

Vậy MN là tiếp tuyến của (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).

Lời giải

Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)

Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng

Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút

Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP