Câu hỏi:
13/07/2024 618Cho tam giác nhọn ABC có trực tâm H và \(\widehat {BAC}\)= 60°. Gọi M, N, P theo thứ tự là chân các đường cao kẻ từ các đỉnh A, B, C của tam giác ABC và I là trung điểm của BC. Chứng minh rằng tam giác INP đều.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta thấy ΔBNC và ΔBPC là hai tam giác vuông có chung cạnh huyền BC nên bốn điểm B, P, N, C nằm trên đường tròn tâm I, đường kính BC.
Khi đó IN = IP ⇒ ΔINP cân tại I (1)
Tam giác ABN vuông tại N có: \(\widehat {ABN} + \widehat {BAN} = 90^\circ \)
⇒ \(\widehat {ABN} = 90^\circ - \widehat {BAN} = 90^\circ - 60^\circ = 30^\circ \)
Ta có \(\widehat {PBN}\) là góc nội tiếp và \(\widehat {PIN}\)là góc ở tâm cùng chắn cung
Do đó \(\widehat {PIN} = 2\widehat {PBN} = 60^\circ \) (2)
Từ (1) và (2) suy ra ΔINP đều.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tanα = 2. Tính \(\tan \left( {\alpha - \frac{\pi }{4}} \right)\).
Câu 2:
Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?
Câu 3:
1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?
Câu 4:
Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?
Câu 5:
Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\) và \(\widehat {ACE}\).
Câu 7:
Cho tam giác ABC có \(\widehat A = 150^\circ \). Diện tích tam giác ABC là:
A. \(\frac{1}{4}ab\)
B. \(\frac{1}{2}bc\)
C. \( - \frac{1}{2}ab\)
D. \(\frac{1}{4}bc\)
về câu hỏi!