Câu hỏi:

13/07/2024 1,248

Giải phương trình: \(\sin \left( {3x + \frac{{2\pi }}{3}} \right) + \sin \left( {x - \frac{{7\pi }}{5}} \right) = 0\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\sin \left( {3x + \frac{{2\pi }}{3}} \right) + \sin \left( {x - \frac{{7\pi }}{5}} \right) = 0\)

\(\sin \left( {3x + \frac{{2\pi }}{3}} \right) - \sin \left( {x - \frac{{7\pi }}{5}} \right) = 0\)

\(\sin \left( {3x + \frac{{2\pi }}{3}} \right) = \sin \left( {x - \frac{{7\pi }}{5}} \right)\)

\(\left[ \begin{array}{l}3x + \frac{{2\pi }}{3} = x - \frac{{7\pi }}{5} + k2\pi \\3x + \frac{{2\pi }}{3} = x - \left( {x - \frac{{7\pi }}{5}} \right) + k2\pi \end{array} \right.\)

\(\left[ \begin{array}{l}x = - \frac{{8\pi }}{{15}} + k\pi \\x = \frac{{11\pi }}{{60}} + \frac{{k\pi }}{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có nghiệm là \(\left[ \begin{array}{l}x = - \frac{{8\pi }}{{15}} + k\pi \\x = \frac{{11\pi }}{{60}} + \frac{{k\pi }}{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).

Lời giải

Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)

Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng

Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút

Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP