Câu hỏi:
29/01/2024 451Cho hình bình hành ABCD. Vẽ về phía ngoài hình bình hành các tam giác đều ABM, AND. Gọi E, F, Q theo thứ tự là trung điểm của BD, AN, AM. Hỏi tam giác MNC là tam giác gì? Vì sao?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(\widehat {MBC} = \widehat {MBA} + \widehat {ABC} = 60^\circ + \widehat {ABC}\left( 1 \right)\)
\(\widehat {CDN} = \widehat {NDA} + \widehat {ABC} = 60^\circ + \widehat {ABC}\left( 2 \right)\)
\(\widehat {MAN} = 360^\circ - \widehat {MAB} - \widehat {NAD} - \widehat {BAD}\)
\(\widehat {MAN} = 360^\circ - 60^\circ - 60^\circ - \widehat {BAD} = 240^\circ - \left( {180^\circ - \widehat {ABC}} \right) = 60^\circ + \widehat {ABC}\left( 3 \right)\)
Từ (1), (2), (3): \(\widehat {MBC} = \widehat {CDN} = \widehat {MAN}\)
Xét tam giác MBC và tam giác CDN có:
BC = DN (=AD)
\(\widehat {MBC} = \widehat {CDN}\)
MB = DC (=AB)
⇒ ∆MBC = ∆CDN (c.g.c)
Chứng minh tương tự: ∆MBC = ∆MAN (c.g.c)
⇒ ∆MBC = ∆CDN = ∆MAN
⇒ MC = CN = MN
⇒ Tam giác CMN là tam giác đều.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tanα = 2. Tính \(\tan \left( {\alpha - \frac{\pi }{4}} \right)\).
Câu 2:
Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?
Câu 3:
1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?
Câu 4:
Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?
Câu 5:
Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\) và \(\widehat {ACE}\).
Câu 7:
Cho tam giác ABC có \(\widehat A = 150^\circ \). Diện tích tam giác ABC là:
A. \(\frac{1}{4}ab\)
B. \(\frac{1}{2}bc\)
C. \( - \frac{1}{2}ab\)
D. \(\frac{1}{4}bc\)
về câu hỏi!