Câu hỏi:
11/07/2024 1,105Quãng đường rơi tự do của một vật được biểu diễn bởi công thức s(t) = 4,9t2 với t là thời gian tính bằng giây và s tính bằng mét.
Vận tốc trung bình của chuyển động này trên khoảng thời gian [5; t] hoặc [t; 5] được tính bằng công thức .
a) Hoàn thiện bảng sau về vận tốc trung bình trong những khoảng thời gian khác nhau. Nêu nhận xét về khi t càng gần 5.
Khoảng thời gian |
[5; 6] |
[5; 5,1] |
[5; 5,05] |
[5; 5,01] |
[5; 5,001] |
[4,999; 5] |
[4,99; 5] |
53,9 |
? |
? |
? |
? |
? |
? |
b) Giới hạn được gọi là vận tốc tức thời của chuyển động tại thời điểm t0 = 5. Tính giá trị này.
c) Tính giới hạn để xác định vận tốc tức thời của chuyển động tại thời điềm t0 nào đó trong quá trình rơi của vật.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
a) • Với t ∈ [5; 5,1], chọn t = 5,1 ta có:
.
• Với t ∈ [5; 5,05], chọn t = 5,05 ta có:
.
• Với t ∈ [5; 5,01], chọn t = 5,01 ta có:
.
• Với t ∈ [5; 5,001], chọn t = 5,001 ta có:
.
• Với t ∈ [4,999; 5], chọn t = 4,999 ta có:
.
• Với t ∈ [4,99; 5], chọn t = 4,99 ta có:
.
Từ đó ta có bảng sau:
Ta thấy càng gần 49 khi t càng gần 5.
b)
c)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Một chuyển động thẳng xác định bởi phương trình s(t) = 4t3 + 6t + 2, trong đó tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời của chuyển động tại t = 2.
Câu 3:
Cho hàm số f(x) = −2x2 có đồ thị (C) và điểm A(1; −2) ∈ (C). Tính hệ số góc của tiếp tuyến với (C) tại điểm A.
Câu 4:
Dùng định nghĩa để tính đạo hàm của các hàm số sau:
b) f(x) = x2 − 2x;
Câu 5:
Một người gửi tiết kiệm khoản tiền 10 triệu đồng vào một ngân hàng với lãi suất 5%/năm. Tính tổng số tiền vốn và lãi mà người đó nhận được sau một năm, nếu tiền lãi được tính theo thể thức
a) lãi kép với kì hạn 6 tháng;
Câu 6:
Dùng định nghĩa để tính đạo hàm của các hàm số sau:
a) f(x) = −x2;
Câu 7:
Cho (C) là đồ thị của hàm số và điểm M(1; 1) ∈ (C). Tính hệ số góc của tiếp tuyến của (C) tại điểm M và viết phương trình tiếp tuyến đó.
về câu hỏi!