Câu hỏi:

12/07/2024 6,565

cho hình bình hành ABCD, đường chéo AC lớn hơn đường chéo BD, kẻ CH vuông góc với AD, CK vuông góc với AB.

a, Chứng minh tam giác BCK đồng dạng tam giác DCH.

b, Chứng minh tam giác CKH đồng dạng tam giác BCA.

c, Chứng minh HK = AC.sinBAD^

d, Tính diện tích của tứ giác AKCH nếu , AB = 4cm, AC = 5cm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
cho hình bình hành ABCD, đường chéo AC lớn hơn đường chéo BD, kẻ CH vuông góc với AD, CK vuông góc với AB. (ảnh 1)

a) Ta có: KBC^=BAD^ (2 góc ở vị trí so le trong)

CDH^=BAD^ (2 góc đồng vị)

Suy ra: CDH^=KBC^

Xét tam giác BCK và DCH có

CDH^=KBC^K^=H^=90°

∆BCK ~ ∆DCH (g.g)

b) Tứ giác AKCH có: AKC^+AHC^=90°+90°=180° 

Suy ra: AKCH nội tiếp đường tròn đường kính AC

Suy ra: KAC^=KHC^ (góc nội tiếp cùng chắn cung KC) (1)

CKH^=CHA^ (góc nội tiếp cùng chắn cung HC)

HAC^=BCA^ (2 góc so le trong)

CKH^=BCA^ (2)

Từ (1) và (2) suy ra: tam giác CKH đồng dạng tam giác BCA (g.g)

c) Do ∆BCK ∆DCH (g.g) nên CKCH=BCDC3

∆CKH ∆BCA (g.g) nên CKBC=KHAC4

Từ (3): CKBC=CHDC5

Từ (4) và (5); CKBC=KHAC=CHDC=sinCDH^

CDH^=BAD^ (đồng vị)

Nên: KHAC=sinBAD^ hay HK = AC.sin

d) CDH^=BAD^=60°

DC = AB = 4

Tam giác DHC vuông có: sinCDH^=CHDCCH=DC.sinCDH^=4.sin60°=23

DH=DC2CH2=42232=2

AH = AD + DH = 5 + 2 = 7

SAHC=12.AH.CH=12.7.23=73

BC = AD = 5

sinKBC^=KCBCKC=BC.sinKBC^=BC.sinCDH^=532

BK=BC2KC2=52

AK = AB + BK = 132

SACK=12.AK.CK=12.132.532=6538

Vậy SAKCH = SACH + SACK73+6538=12138

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC. Các điểm M, N, P lần lượt là trung điểm của AB, AC, BC. Xác định hiệu am - an, mn - nc , mn - pn, bp - cp (ảnh 1)

AMAN=AM+NA=NM

N là trung điểm AC nên AN=NC

MNNC=MNAN=MN+NA=MA

Xét tam giác ABC có: M, N là trung điểm AB, AC nên MN là đường trung bình

Suy ra: MN // BC; MN=12BC=BP=PC

=> MN=PC

MNPN=PCPN=NC

BPCP=BP+PC=BC

Lời giải

Để A ∩ B = thì: m+11m3m2m3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay