Câu hỏi:
12/07/2024 7,567
cho hình bình hành ABCD, đường chéo AC lớn hơn đường chéo BD, kẻ CH vuông góc với AD, CK vuông góc với AB.
a, Chứng minh tam giác BCK đồng dạng tam giác DCH.
b, Chứng minh tam giác CKH đồng dạng tam giác BCA.
c, Chứng minh HK = AC.sin
d, Tính diện tích của tứ giác AKCH nếu , AB = 4cm, AC = 5cm.
cho hình bình hành ABCD, đường chéo AC lớn hơn đường chéo BD, kẻ CH vuông góc với AD, CK vuông góc với AB.
a, Chứng minh tam giác BCK đồng dạng tam giác DCH.
b, Chứng minh tam giác CKH đồng dạng tam giác BCA.
c, Chứng minh HK = AC.sin
d, Tính diện tích của tứ giác AKCH nếu , AB = 4cm, AC = 5cm.
Quảng cáo
Trả lời:

a) Ta có: (2 góc ở vị trí so le trong)
Mà (2 góc đồng vị)
Suy ra:
Xét tam giác BCK và DCH có
⇒ ∆BCK ~ ∆DCH (g.g)
b) Tứ giác AKCH có:
Suy ra: AKCH nội tiếp đường tròn đường kính AC
Suy ra: (góc nội tiếp cùng chắn cung KC) (1)
Và (góc nội tiếp cùng chắn cung HC)
Mà (2 góc so le trong)
⇒ (2)
Từ (1) và (2) suy ra: tam giác CKH đồng dạng tam giác BCA (g.g)
c) Do ∆BCK ∽ ∆DCH (g.g) nên
∆CKH ∽ ∆BCA (g.g) nên
Từ (3):
Từ (4) và (5);
Mà (đồng vị)
Nên: hay HK = AC.sin
d)
DC = AB = 4
Tam giác DHC vuông có:
AH = AD + DH = 5 + 2 = 7
BC = AD = 5
AK = AB + BK =
Vậy SAKCH = SACH + SACK =
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

*
N là trung điểm AC nên
*
Xét tam giác ABC có: M, N là trung điểm AB, AC nên MN là đường trung bình
Suy ra: MN // BC;
=>
*
*
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.